

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 12 (2004) 2059-2077

Baylis—Hillman reaction assisted parallel synthesis of 3,5-disubstituted isoxazoles and their in vivo bioevaluation as antithrombotic agents [☆]

S. Batra,^{a,*} A. K. Roy,^a A. Patra,^a A. P. Bhaduri,^a W. R. Surin,^b S. A. V. Raghavan,^b P. Sharma,^b K. Kapoor^b and M. Dikshit^{b,*}

^aDivision of Medicinal Chemistry, Central Drug Research Institute, Lucknow 226 001, India ^bDivision of Pharmacology, Central Drug Research Institute, Lucknow 226 001, India

Received 3 February 2004; revised 23 February 2004; accepted 24 February 2004

Abstract—The solution-phase parallel synthesis involving reactions of Baylis—Hillman products of 3-substituted-5-isoxazolecarb-aldehydes with nucleophiles and their in vivo antithrombotic evaluations are described along with the results of in vitro platelet aggregation inhibition assay of a few compounds. Results of the detailed evaluation of one of the compounds as an inhibitor of platelet aggregation are also presented.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Thrombotic disorders, resulting from abnormalities in the blood flow, coagulation cascade or fibrinolysis represent the major share of the various cardiovascular diseases encountered both in developed and developing countries.^{1,2} The current therapies used for prophylactic and prevention have considerable limitations because they require careful clinical monitoring and are associated with high incidence of cardiovascular events and complications associated with bleeding.^{3,4} These therapies include the use of the antiplatelet agents namely aspirin and ticlopidine and anticoagulant agents such as heparin and warfarin.^{2,3} The ever-increasing understanding of the pathophysiology and the molecular mechanisms of thrombosis have helped in understanding the role of various biochemical parameters in the coagulation cascade.²⁻⁷ This has provided impetus

towards the discovery of newer antithrombotic agents, which target one or more of these novel biochemical parameters and has resulted in identifying a wide range of new chemical compounds including various heterocyclic derivatives. The synthesis of various isoxazole-derivatives and their bioevaluation as antithrombotic has been recently reported. He have reported earlier hits in chemical libraries generated from 5-isoxazole-carbaldehydes. In the light of these observations it was desired to build different molecular scaffolds simulating 3,5-disubstituted isoxazoles and this led to solution-phase parallel synthesis of compounds utilizing Baylis—Hillman reaction as the key step.

All the synthesized compounds were evaluated first in high-throughput screen (HTS) mode for thrombin inhibition and later on were subjected to in vivo bioevaluation because earlier experience of this laboratory indicated that many compounds, found inactive in vitro, against protease activity assay of thrombin were however, protective in animal models. This observation can be explained on the basis of various targets for anti-thrombotic action by the drugs/test agents. During this in vivo screening a number of hits obtained from the chemical library reported here were identified. This prompted us to adopt two different strategies of bioassay. In the first strategy, a few of the active compounds were subjected to in vitro platelet aggregation inhibition assay. In the second strategy, the most active compound

Keywords: Baylis–Hillman reaction; Isoxazolecarbaldehyde; Isoxazole; Nucleophilic substitution; Substituted piperazine; Antithrombotic activity; Platelet aggregation.

[★] CDRI Communication no 6468. In portion presented at BNP-2004 (IUPAC Conference) N. Delhi 26th–31st January, 2004.

^{*} Corresponding authors. Tel.: +91-522-2212411-18x4368; fax: +91-522-2223405/2229338 (S.B.); tel.: +91-522-2212411-18x4254 (M.D.); e-mail addresses: batra_san@yahoo.co.uk; madhudikshit@yahoo.com

was studied in greater detail for understanding the mechanism of its biological action. The details of our studies are presented here.

2. Chemistry

The various isoxazole derivatives were synthesized by solution-phase parallel synthesis utilizing three different synthetic strategies with Baylis–Hillman reaction¹¹ as the key step. Since during this exercise our major aim was to discover the antithrombotic activity in synthesized compounds, no attempt was made at any stage to separate the diastereoisomeric mixtures. In the first instance Baylis-Hillman reactions of different 5-isoxazolecarboxaldehydes (A1-6) with activated alkenes (B1-5) were carried out to obtain adducts 2(A1-6-B1-5). These were then subjected to nucleophilic substitution by N-methyl piperazine (C1) to obtain diastereoisomeric mixture of amines [4(A1-6-B1-5-C1)] (Scheme 1). All these reactions were carried out in methanol and the reaction mixtures after the completion of the reaction were directly passed through a small band of basic alumina column to obtain the desired amines. In the

next step the nucleophilic substitution in adducts 2(A1,3-6-B2), obtained from reactions of aldehydes (A1,3-6) and ethyl acrylate (B2), with substituted piperazines and secondary amines (C2-7) afforded compounds 4(A1,3-6-B2-C2-7). In another synthetic strategy the acetates 3(A1,3-4-B1-3, 5), derived from acetylation of Baylis-Hillman adducts were subjected to nucleophilic substitution with N-methyl piperazine only to obtain compounds 5(A1,3-4-B1-3, 5-C1). On the other hand in a different synthetic sequence the acetates 3(A1,3-4-B1-3) were first subjected to S_N2' nucleophilic substitution with hydride utilizing sodium borohydride in the presence of DABCO in aqueous medium, to obtain products 6(A1,3-4-B1-3). Further Michael addition of N-methyl piperazine on the double bond of these compounds 6(A1,3-4-B1-3) led to amines 7(A1-3-4-B1-3-C1).

3. Results and discussion

All new compounds belonging to series 4, 5, and 7 were first evaluated in the HTS mode against thrombin. None of the compounds showed any promising activity (data

Scheme 1. Reagents: (i) alkene, DABCO; (ii) amine, MeOH; (iii) AcCl, pyridine, CH2Cl2; (iv) DABCO, NaBH4, THF/H2O.

not shown). On the basis of the experience of this laboratory, stated earlier in this communication, in vivo antithrombotic activity including the effect on the bleeding time was evaluated. Initially the bioevaluation of compounds represented by structure 4 (entries 1–30, Table 1) was carried out. These were synthesized using diversity at two points namely the changes in the substituents on the phenyl ring and in the electron-withdrawing group (EWG). The methyl piperazine moiety representing R in all these compounds remained unchanged. The results of the bioevaluation indicated that compounds possessing the ethyl ester group as the EWG with unsubstituted phenyl (entry 7) and o-chloro-phenyl (entry 9) as the substituents at position 3 of the isoxazole ring exhibited significant antithrombotic activity. The next set of compounds 4(A1,3-6-B2-C2-7) (entries 31-60) in which the methyl piperazine moiety was replaced with other substituents did not elicit any antithrombotic activity. This led to the next step in which the need of the secondary hydroxyl group for eliciting antithrombotic activity was evaluated by subjecting compounds representing by series 5 (entries 61–72) and 7 (entries 73–81) for bioevaluation. In both the series, modifications were made in substituents on the phenyl ring and in EWG keeping the *N*-methyl piperazine moiety as the only representative of R.

Results of in vivo evaluation of all the compounds represented by series **4**, **5**, and **7** are presented in Table 1. Out of all the compounds evaluated, seven compounds showed activity more than 50% while 13 compounds exhibited activity between 20–50%. Any activity below 20% was not considered as significant activity. All the seven compounds showing more than 50% activity in the antithrombotic assay belong to series **4**. These compounds also had pronounced effect on the bleeding time. All these compounds had unsubstituted phenyl (entries 1, 7, 13, and 19) or *o*-chloro phenyl (entries 4, 10, and

Table 1. Results of the in vivo antithrombotic activity of compounds belonging to series 4, 5 and 7

Entry no	Compound no	Antithrombotic activity (% protection at 30 µM/kg)	Bleeding time (% increase at 30 µM/kg)	Entry no	Compound no	Antithrombotic activity (% protection at 30 µM/kg)	Bleeding time (% increase at 30 µM/kg)
1	4A1B1C1	50	80, 150	42	4A3B2C4	NA	NA
2	4A2B1C1	NA	NA	43	4A4B2C4	NA	29
3	4A3B1C1	20	37.5	44	4A5B2C4	NA	NA
4	4A4B1C1	60	38	45	4A6B2C4	NA	NA
5	4A5B1C1	NA	NA	46	4A1B2C5	NA	NA
6	4A6B1C1	NA	NA	47	4A3B2C5	40	NA
7	4A1B2C1	60	50	48	4A4B2C5	NA	24
8	4A2B2C1	20	NA	49	4A5B2C5	NA	NA
9	4A3B2C1	NA	ND	50	4A6B2C5	NA	NA
10	4A4B2C1	80	30	51	4A1B2C6	NA	NA
11	4A5B2C1	NA	ND	52	4A3B2C6	30	12.5
12	4A6B2C1	45	NA	53	4A4B2C6	NA	ND
13	4A1B3C1	70	NA	54	4A5B2C6	20	25
14	4A2B3C1	40	12.5	55	4A6B2C6	NA	NA
15	4A3B3C1	30	NA	56	4A1B2C7	NA	NA
16	4A4B3C1	NA	ND	57	4A3B2C7	NA	12.5
17	4A5B3C1	NA	37.5	58	4A4B2C7	NA	NA
18	4A6B3C1	NA	NA	59	4A5B2C7	NA	NA
19	4A1B4C1	60	112.5, 146	60	4A6B2C7	ND	ND
20	4A2B4C1	NA	ND	61	5A1B1C1	NA	NA
21	4A3B4C1	30	ND	62	5A3B1C1	NA	NA
22	4A4B4C1	80	75	63	5A4B1C1	NA	NA
23	4A5B4C1	NA	NA	64	5A1B2C1	20	18
24	4A6B4C1	NA	NA	65	5A3B2C1	40	NA
25	4A1B5C1	80	62.5	66	5A4B2C1	NA	25
26	4A2B5C1	20	ND	67	5A1B3C1	NA	NA
27	4A3B5C1	ND	ND	68	5A3B3C1	NA	12.5
28	4A4B5C1	30	NA	69	5A4B3C1	NA	NA
29	4A5B5C1	NA	37.5	70	5A1B5C1	NA	NA
30	4A6B5C1	NA	NA	71	5A3B5C1	NA	NA
31	4A1B2C2	20	NA	72	5A4B5C1	NA	37.5
32	4A3B2C2	NA	NA	73	7A1B1C1	NA	NA
33	4A4B2C2	NA	NA	74	7A3B1C1	NA	NA
34	4A5B2C2	NA	NA	75	7A4B1C1	NA	NA
35	4A6B2C2	NA	NA	76	7A1B2C1	NA	NA
36	4A1B2C3	NA	NA	77	7A3B2C1	NA	NA
37	4A3B2C3	NA	12.5	78	7A4B2C1	NA	NA
38	4A4B2C3	NA	62.5	79	7A1B3C1	NA	12.5
39	4A5B2C3	30	NA	80	7A3B3C1	NA	NA
40	4A6B2C3	NA	NA	81	7A4B3C1	10	NA

Any in vivo % protection below 20% has been mentioned as NA while any effect that is less than 10% on the bleeding time has been mentioned as NA (not active).

22) group as the substituents at position 3 of the isoxazole ring. It was also observed that the deletion of the secondary hydroxyl group in the analogues of the active compounds led to total loss of biological activity. In order to provide a plausible explanation for this observation, a set of compounds, comprising of active compounds of series 4 and inactive compounds of series 5 and 7, was subjected to in vitro ADP induced platelet aggregation assay. These compounds were A1B2C1 (4, 5, and 7, entries 7, 64 and 77, respectively), A4B2C1 (4, 5, and 7, entries 10, 66 and 78, respectively) and A1B5C1 (4 and 5, entries 25 and 70, respectively). It was observed that most of the compounds, found inactive in the in vivo assay, showed significant inhibition against ADP induced aggregation (Table 2). On the basis of these results it was presumed that these compounds possibly had problems with the bioavailability. Finally, only one compound 4A1B2C1 was selected for a detailed study. as this compound was the one that exhibited significant antithrombotic efficacy with minimal effects on the bleeding time. It will be appropriate to mention that for carrying out the detailed study, we proceeded with the diastereoisomeric mixture of compound 4A1B2C1 as all attempts to separate them failed.

In the preliminary in vivo antithrombotic activity evaluation, 4A1B2C1 showed significant protection to collagen and adrenaline induced thrombosis¹² at 30 μM/kg dose, while 4A4B2C1 was not able to significantly reduce stasis induced thrombus formation in rabbits^{13,14} (mean wet thrombus weight of 28±7 mg) at a dose, which offered significant protection in mice. Heparin, a potent inhibitor of thrombin action, exhibited a significant inhibition against thrombus formation in the rabbit stasis model (maximum inhibition: 97.5% at 1 mg/kg with a mean wet thrombus weight of 1 ± 0.24 mg) in comparison to the vehicle treated controls (mean wet thrombus weight of 43 ± 13 mg). Results suggest that the compound might be acting predominantly at the platelet targets to prevent thrombosis. Moreover, there was no significant prolongation of bleeding time, indicating that this compound does not interfere with normal haemostasis.¹⁵ Noninterference with the haemostatic machinery was also confirmed by the insignificant alterations in the clotting time parameters, as detailed in Table 3. It, therefore, appeared that the compound 4A1B2C1 elicited its antithrombotic activity by inhibiting platelet

Table 2. Effect of compounds on ADP (5 μM)-induced aggregation in rats

Compounds IC ₅₀ (μM) (95% lower In vivo % protection limit–95% upper limit) from Table 1	1
4440001 2000 (16 6 25 0)	
4A1B2C1 20.0 (16.6–25.9) 60	
5A1B2C1 8.0 (6.2–10.3) 20	
7A1B2C1 78.8 (51.9–119.8) NA	
4A4B2C1 95.8 (75.8–121.2) 80	
5A4B2C1 28.1 (23.8–33.1) NA	
7A4B2C1 82.3 (66.7–101.7) NA	
4A1B5C1 216.4 (183.4–255.4) 80	
5A1B5C1 124.7 (98.3–158.1) NA	

Data represents the mean IC₅₀ of at least three independent experiments.

Table 3. Effect of 4A4B2C1 on coagulation parameters

Clotting time parameters (in seconds)	Vehicle treated	4A4B2C1
Thrombin time (TT) Prothrombin time (PT) Activated partial throm- boplastin time (APTT)	18.6 ± 0.2 16.6 ± 0.1 23.7 ± 1.4	18.3 ± 0.2 16.3 ± 0.2 20.7 ± 0.5

Table 4. Effect of 4A4B2C1 on platelet aggregation

Agonist	IC ₅₀ (μM) (95% lower limit–95% upper limit)
Collagen	73.1 (59–90)
ADP	95.8 (75.8–121.2)
Thrombin	96.4 (71.6–129.6)
PMA	255.1 (198–328.6)
A23187	303.9 (258.3–357.7)
Arachidonic acid	1214.2 (833–1770)

aggregation. Hence the need arose to evaluate compound 4A1B2C1 as an antagonist for platelet aggregation. Platelet aggregation inducers such as ADP, collagen, and thrombin act at the receptor level to bring about the activation of platelets and subsequent exposure of GPIIb-IIIa. 5-7,16-18 GPIIb-IIIa is fibrinogen receptor, which interlinks with the same receptor of the adjacent platelets through fibrinogen, leading to aggregation of platelets.¹⁹ While other inducers such as PMA, AA, or A23187^{20–22} induces aggregation by acting at the intermediate mediator level, PMA is also an activator of protein kinase C (PKC), which in turn brings about the phosphorylation of various proteins involved in the activation pathway. Calcium ionophore A23187 increases the influx of calcium ions into the platelets and causes GPIIb-IIIa exposure and platelet aggregation. Arachidonic acid is metabolized by the enzyme cyclooxygenase in the platelets to form thromboxane A₂ that binds to the Tp-receptor and thus activates the platelets in positive feed back mechanism leading to platelet aggregation.19

Compound 4A1B2C1 inhibited platelet aggregation irrespective of the agonists used (Table 4). Though it was more selective to collagen, ADP and thrombin, suggesting that it interfered at the receptor surface to subsequently inhibit the events involved in the aggregation, it seemed likely that this compound interfered at the common receptor in the platelet aggregation cascade. As all the cascades eventually terminate at the expression of GPIIb–IIIa receptor and fibrinogen binding, it thus seems likely that compound 4A1B2C1 interfered with the fibrinogen binding to the GPIIb–IIIa receptor to display the antithrombotic activity. Thus, compound 4A1B2C1 is a significant lead molecule that can be tailored further to derive a new class of antithrombotic agents.

4. Conclusion

In conclusion, we have described facile parallel synthesis and in vivo antithrombotic evaluation of various 3,5-

disubstituted isoxazole derivatives obtained from 3-substituted-5-isoxazolecarbaldehyde utilizing Baylis—Hillman chemistry. The present study has also provided an insight into the plausible mode of action of these derivatives.

5. Experimental section

5.1. General methods

Reactions were run in oven-dried glassware. Dried solvents were prepared by standard procedures. The column chromatography for all compounds other than amines was carried on silica gel (60-1200 mesh) using distilled solvents. The final amines were passed through basic alumina column using distilled solvents. Melting points are uncorrected and were determined in capillary tubes on a hot stage apparatus containing silicon oil. IR spectra were recorded using an FTIR spectrophotometer. ¹H NMR and ¹³C NMR spectra were run in CDCl₃ and recorded on either a 300 or a 200 MHz FT spectrometer, using TMS as an internal standard (chemical shifts in δ values, J in Hz). The EIMS and FABMS were recorded on appropriate spectrometers and ESMS were recorded through direct injections in an LCMS system. Elemental analyses were performed on a microanalyzer. The diastereoisomeric ratios are based on ¹H NMR. Due to the complex nature of ¹H NMR spectra for compounds having C6 (4-benzylamino piperidine) as substitution, they are not being provided. The spectroscopic data corresponding to Baylis-Hillman adducts and their corresponding acetates have been published earlier.²³

5.2. Baylis-Hillman reaction—general procedure

To a mixture of DABCO (0.12 g, 1.06 mmol) and appropriate alkene (5.3 mmol) that has been stirred at rt for 20 min. was added appropriate aldehyde from 1(A1-6) (5.3 mmol) under stirring and the reaction was allowed to proceed for a period 30 min. Thereafter 5% aq HCl soln (50 mL) was added to the reaction mixture to neutralize the base and extracted with ethyl acetate $(2 \times 50 \text{ mL})$. The organic layers were combined, washed with brine (75 mL), dried over anhyd Na₂SO₄ and evaporated under vacuum to yield an oily residue. The residue was purified by column chromatography over silica gel (60–120 mesh) using hexane/ethyl acetate as eluent. A mixture of hexane/ethyl acetate (65:35, v/v) yielded the desired products 2(A1-6-B1-5) as solids or oils.

5.3. Reaction with amines—general procedure

To the appropriate derivative from 2, 3 and 6 (5.0 mmol) in methanol (4 mL) was added amine (6.0 mmol) and the mixture was stirred at rt from 14–20 h (preferentially overnight). On completion, the excess solvent was evaporated and the residue was filtered from a small band of basic alumina using chloroform (0.5 mL of

methanol in 200 mL of chloroform was added in few cases). The eluent was evaporated to obtain the required products as pale yellow oils or solid. Most of the amines were immediately converted to their corresponding oxalate salts. To the solution of amine in dry methanol (ca. 2–4 mL) was added a solution of oxalic acid dihydrate (1.0 equiv) in dry methanol (ca. 2–4 mL). The mixture was hand shaked for 10–15 min. and then dry ether was added freely to precipitate the salt. In few cases the salts were recrystallized from methanol.

5.4. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)-propionic acid methyl ester (4A1B1C1) (6:1)

The product was obtained as colourless oil (59%); IR (neat) 1735 (CO₂Me), 3319 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29 (s, 6H, 2×NCH₃), 2.48–2.88 (m, 18H, 8×NCH₂ and 2×CH), 3.06–3.22 (m, 4H, 2×NCH₂), 3.66 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 5.33, 5.37 (d, 1H, J = 7.2 Hz, CH), 5.46, 5.48 (d, 1H, J = 7.2 Hz, CH), 6.56 (s, 1H, =CH), 6,59 (s, 1H, =CH), 7.43–7.46 (m, 6H, Ar–H), 7.78–7.82 (m, 4H, Ar–H); Mass (EI) m/z 359 (M⁺). Oxalate salt: mp 206–208 °C; Anal. [C₁₉H₂₃N₃O₄·2(CO₂H)₂] C, H, N.

5.5. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-p-tolyl-isoxazol-5-yl)-propionic acid methyl ester (4A2B1C1) (5:1)

The product was obtained as colourless oil (61%); IR (neat, cm⁻¹) 1732 (CO₂Me), 3385 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 6H, 2 × NCH₃), 2.39 (s, 6H, 2 × CH₃), 2.47–2.86 (m, 18H, 8 × NCH₂ and 2 × CH), 3.10–3.16 (m, 4H, 2 × NCH₂), 3.65 (s, 3H, CO₂CH₃), 3.73 (s, 3H, CO₂CH₃), 5.31, 5.35 (d, 1H, J = 7.8 Hz, CH), 5.46, 5.50 (d, 1H, J = 7.8 Hz, CH), 6.52 (s, 1H, =CH), 6.55 (s, 1H, =CH), 7.23, 7.27 (d, 4H, J = 8.0 Hz, Ar–H), 7.66, 7.70 (d, 4H, J = 8.0 Hz, Ar–H); Mass (ES+) m/z 374.67 (M⁺), 396.53 (M⁺+Na). Oxalate salt: mp 198–199 °C; Anal. [C₂₀H₂₇N₃ O₄·2(CO₂H)₂] C, H, N.

5.6. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (4A3B1C1) (9:1)

The product was obtained as light brown solid (58%), mp 63–64 °C; IR (neat) 1732 (CO₂Me), 3424 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 3H, NCH₃), 2.46 (s, 3H, NCH₃), 2.43–2.93 (m, 18H, 8 × NCH₂ and 2 × CH), 3.10–3.16 (m, 4H, 2 × NCH₂), 3.70 (s, 3H, CO₂CH₃), 3.73 (s, 3H, CO₂CH₃), 5.11 (s, 4H, 2 × OCH₂O), 5.30, 5.34 (d, 1H, J = 7.8 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.8 Hz, CH), 6.49 (s, 1H, =CH), 6.52 (s, 1H, =CH), 7.01, 7.05 (d, 4H, J = 8.6 Hz, Ar–H); Mass (ES+) m/z 466.93 (M⁺+1), 488.60 (M⁺+Na). Oxalate salt: mp 197–198 °C (dec); Anal. [C₂₆H₃₁N₃ O₅·2(CO₂H)₂] C, H, N.

5.7. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (4A4B1C1) (5:1)

The product was obtained as colourless oil (61%); IR (neat) 1733 (CO₂Me), 3331 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 2.29$ (s, 6H, $2 \times \text{NCH}_3$), 2.39-2.86 (m, 18H, $8 \times \text{NCH}_2$ and $2 \times \text{CH}$), 3.09-3.14 (m, 4H, $2 \times \text{NCH}_2$), 3.66 (s, 3H, CO₂CH₃), 3.75 (s, 3H, CO₂CH₃), 5.31, 5.35 (d, 1H, J = 7.8 Hz, CH), 5.40, 5.44 (d, 1H, J = 7.2 Hz, CH), 6.55 (s, 1H, =CH), 6.58 (s, 1H, =CH), 7.32-7.49 (m, 6H, Ar-H), 7.69-7.74 (m, 2H, Ar-H); Mass (EI) m/z 393 (M⁺). Oxalate salt: mp 198–199 °C; Anal. [C₁₉H₂₄ClN₃O₄·2(CO₂H)₂] C, H, N.

5.8. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (4A5B1C1) (5:1)

The product was obtained as colourless oil (65%); IR (neat) 1730 (CO₂Me), 3362 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29 (s, 6H, 2×NCH₃), 2.39–2.89 (m, 18H, 8×NCH₂ and 2×CH), 3.09–3.17 (m, 4H, 2×NCH₂), 3.66 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 5.31, 5.35 (d, 1H, J = 7.8 Hz, CH), 5.42, 5.46 (d, 1H, J = 7.4 Hz, CH), 6.52 (s, 1H, =CH), 6.56 (s, 1H, =CH), 7.40, 7.44 (d, 4H, J = 8.4 Hz, Ar–H), 7.71, 7.75 (d, 4H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 416.00 (M⁺+Na). Oxalate salt: mp 198–200 °C; Anal. [C₁₉H₂₄ClN₃O₄·2(CO₂H)₂] C, H, N.

5.9. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (4A6B1C1) (5:1)

The product was obtained as colourless oil (56%); IR (neat, cm⁻¹) 1736 (CO₂Me), 3447 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29 (s, 6H, 2×NCH₃), 2.34–2.87 (m, 18H, 8×NCH₂ and 2×CH), 3.10–3.18 (m, 4H, 2×NCH₂), 3.66 (s, 3H, CO₂CH₃), 3.74 (s, 3H, CO₂CH₃), 5.33, 5.37 (d, 1H, J = 7.6 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.4 Hz, CH), 6.70 (s, 1H, =CH), 6.71 (s, 1H, =CH), 7.33, 7.35 (dd, 2H, J₁ = 2.0 Hz, J₂ = 8.2 Hz, Ar–H), 7.50, 7.51 (d, 2H, J = 2.0 Hz, Ar–H), 7.66, 7.70 (d, 2H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 428 (M⁺+1). Oxalate salt: mp 171–172 °C; Anal. [C₁₉H₂₃Cl₂N₃-O₄·2(CO₂H)₂] C, H, N.

5.10. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C1) (6:1)

The product was obtained as white solid (69%), mp 110–111 °C; IR (KBr, cm⁻¹) 1728 (CO₂Et), 3220 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.27 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.29 (s, 3H, NCH₃), 2.31 (s, 3H, NCH₃), 2.45–2.87 (m, 18H, 8 × NCH₂ and 2 × CH), 3.10–3.16 (m, 4H, 2 × NCH₂), 4.05–4.16 (m, 2q merged, 4H, J = 7.2 Hz, 2 × CH₂), 5.32, 5.35 (d, 1H, J = 5.4 Hz,

CH), 5.39, 5.42 (d, 1H, J = 5.4 Hz, CH), 6.58 (s, 1H, =CH), 6.60 (s, 1H, =CH), 7.42–7.45 (m, 6H, Ar–H), 7.77–7.84 (m, 4H, Ar–H); Mass (EI) m/z 373 (M⁺). Oxalate salt: mp 196–198 °C; Anal. [C₂₀H₂₇N₃-O₄·2(CO₂H)₂] C, H, N.

5.11. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-*p*-tolyl-isoxazol-5-yl)-propionic acid ethyl ester (4A2B2C1) (single)

The product was obtained as white solid (54%), mp 139–140 °C; IR (KBr, cm⁻¹) 1730 (CO₂Et), 3437 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.17 (t, 3H, J = 7.2 Hz, CH₃), 2.28 (s, 3H, NCH₃), 2.39 (s, 3H, CH₃), 2.47–2.87 (m, 9H, 4 × NCH₂ and CH), 3.04–3.14 (m, 2H, NCH₂), 4.10 (q, 2H, J = 7.1 Hz, OCH₂), 5.29, 5.33 (d, 1H, J = 7.8 Hz, CH), 6.65 (s, 1H, =CH), 7.22, 7.26 (d, 4H, J = 8.0 Hz, Ar–H), 7.66, 7.70 (d, 4H, J = 8.0 Hz, Ar–H); Mass (EI) m/z 387 (M⁺). Oxalate salt: mp 143–144 °C; Anal. [C₂₁H₂₉N₃O₄·2(CO₂H)₂] C, H, N.

5.12. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydro-xy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (4A3B2C1) (4:1)

The product was obtained as white solid (50%), mp 69–70 °C; IR (KBr) 1730 (CO₂Et), 3437 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.29 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.29 (s, 6H, 2 × NCH₃), 2.44–2.86 (m, 18H, 8 × NCH₂ and 2 × CH), 4.05–4.14 (m, 2q merged, 4H, J = 7.2 Hz, 2 × OCH₂), 5.11 (s, 4H, 2 × OCH₂O), 5.29, 5.31 (d, 1H, J = 7.8 Hz, CH), 5.35, 5.38 (d, 1H, J = 7.8 Hz, CH), 6.49 (s, 1H, =CH), 6.51 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.6 Hz, Ar–H), 7.32–7.46 (m, 5H, Ar–H), 7.70, 7.74 (d, 2H, J = 8.8 Hz, Ar–H); Mass (ES+) m/z 481.00 (M⁺+1), 502.67 (M⁺+Na). Oxalate salt: mp 217–219 °C; Anal. [C₂₇H₃₃N₃-O₅·2(CO₂H)₂] C, H, N.

5.13. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (4A4B2C1) (9:1)

The product was obtained as colourless oil (65%); IR (neat) 1728 (CO₂Et), 3329 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.06–1.17 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.26 (s, 3H, NCH₃), 2.28 (s, 3H, NCH₃), 2.48–2.87 (m, 18H, 8 × NCH₂ and 2 × CH), 4.105–4.16 (m, 2q merged, 4H, J = 7.2 Hz, 2 × OCH₂), 5.32. 5.36 (d, 1H, J = 7.8 Hz, CH), 5.38. 5.42 (d, 1H, J = 7.8 Hz, CH), 6.72 (s, 1H, =CH), 6.78 (s, 1H, =CH), 7.33–7.50 (m, 6H, Ar–H), 7.69–7.74 (m, 2H, Ar–H); ¹³C NMR (CDCl₃, 50.32 MHz) δ = 14.39, 45.45, 46.23, 46.87, 53.68, 55.27, 56.55, 59.65, 61.65, 69.62, 70.39, 77.67, 103.47, 104.15, 127.48, 128.75, 130.78, 131.34, 133.27, 161.14, 170.88, 171.13, 172.72, 173.43; Mass (FAB+) m/z 408 (M⁺+1). Oxalate salt: mp 205–206 °C; Anal. [C₂₀H₂₆ClN₃O₄·2(CO₂H)₂] C, H, N.

5.14. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (4A5B2C1) (6:1)

The product was obtained as colourless oil (64%); IR (neat) 1730 (CO₂Et), 3374 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.13–126 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.28 (s, 6H, 2 × NCH₃), 2.33–2.92 (m, 18H, 8 × NCH₂ and 2 × CH), 3.09–3.15 (m, 4H, 2 × NCH₂), 3.09–3.15 (m, 2q merged, 4H, J = 7.0 Hz, 2 × OCH₂), 5.29, 5.33 (d, 1H, J = 7.6 Hz, CH), 5.36, 5.40 (d, 1H, J = 7.6 Hz, CH), 6.53 (s, 1H, =CH), 6.56 (s, 1H, =CH), 7.40, 7.44 (d, 4H, J = 8.4 Hz, Ar–H), 7.71, 7.75 (d, 4H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 408.67 (M⁺+1), 430.40 (M⁺+Na). Oxalate salt: mp 202–205 °C; Anal. [C₂₀H₂₆ClN₃O₄·2(CO₂H)₂] C, H, N.

5.15. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (4A6B2C1) (3:1)

The product was obtained as colourless oil (61%); IR (neat, cm⁻¹) 1730 (CO₂Et), 3404 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.33 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.29 (s, 6H, 2 × NCH₃), 2.47–2.86 (m, 18H, 8 × NCH₂ and 2 × CH), 3.10–3.15 (m, 2H, NCH₂), 4.10 (q, 4H, J = 7.2 Hz, OCH₂), 5.32, 5.36 (d, 1H, J = 7.8 Hz, CH), 5.41, 5.44 (d, 1H, J = 7.6 Hz, CH), 6.70 (s, 1H, =CH), 6.71 (s, 1H, =CH), 7.32, 7.36 (dd, 1H, J₁ = 2.0 Hz, J₂ = 8.4 Hz, Ar–H), 7.51, 7.52 (d, 1H, J₂ = 2.0 Hz, Ar–H), 7.66, 7.70 (d, 1H, J₃ = 8.4 Hz, Ar–H); Mass (ES+) m/z 444.07 (M⁺+1), 464.00 (M⁺+Na). Oxalate salt: mp 180–182 °C (dec); Anal. [C₂₀H₂₅Cl₂N₃O₄·2(CO₂H)₂] C, H, N.

5.16. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)- propionic acid butyl ester (4A1B3C1) (5:1)

The product was obtained as colourless oil (57%); IR (neat, cm⁻¹) 1708 (CO₂Bu-n), 3377 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.81$ –0.94 (m, 2t merged, 6H, J = 7.2 Hz, $2 \times \text{CH}_3$), 1.23–1.31 (m, 4H, $2 \times \text{CH}_2$), 1.47–1.56 (m, 4H, $2 \times \text{CH}_2$), 2.29 (s, 6H, $2 \times \text{NCH}_3$), 2.35–2.86 (m, 18H, $8 \times \text{NCH}_2$ and $2 \times \text{CH}$), 3.07–3.17 (m, 4H, $2 \times \text{NCH}_2$), 4.06 (t, 2H, J = 6.6 Hz, OCH₂), 4.13 (t, 2H, J = 6.6 Hz, OCH₂), 5.32, 5.34 (d, 1H, J = 7.8 Hz, CH), 5.36, 5.38 (d, 1H, J = 7.8 Hz, CH), 6.55 (s, 1H, =CH), 6.58 (s, 1H, =CH), 7.43–7.45 (m, 6H, Ar–H), 7.77–7.84 (m, 4H, Ar–H); Mass (EI) m/z 401 (M⁺). Oxalate salt: mp 195–197 °C; Anal. [C₂₂H₃₁N₃O₄·2(CO₂H)₂] C, H, N.

5.17. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-p-tolyl-isoxazol-5-yl)-propionic acid butyl ester (4A2B3C1) (3:1)

The product was obtained as pale yellow oil (61%); IR (neat, cm⁻¹) 1709 (CO₂Bu-*n*), 3380 (OH); ¹H NMR (CDCl₃, 300 MHz) $\delta = 0.82$ –0.93 (m, 2t merged, 6H,

 $J = 7.2 \,\text{Hz}, \, 2 \times \text{CH}_3), \, 1.21 - 1.29 \,(\text{m}, \, 4\text{H}, \, 2 \times \text{CH}_2), \, 1.49 - 1.63 \,(\text{m}, \, 4\text{H}, \, 2 \times \text{CH}_2), \, 2.27 \,(\text{s}, \, 6\text{H}, \, 2 \times \text{CH}_3), \, 2.39 \,(\text{s}, \, 6\text{H}, \, 2 \times \text{NCH}_3), \, 2.42 - 2.86 \,(\text{m}, \, 18\text{H}, \, 8 \times \text{NCH}_2 \,\text{and} \, 2 \times \text{CH}), \, 3.10 - 3.14 \,(\text{m}, \, 4\text{H}, \, 2 \times \text{NCH}_2), \, 4.04 \,(\text{t}, \, 2\text{H}, \, J = 6.6 \,\text{Hz}, \, \text{OCH}_2), \, 4.13 \,(\text{t}, \, 2\text{H}, \, J = 6.6 \,\text{Hz}, \, \text{OCH}_2), \, 5.31, \, 5.33 \,(\text{d}, \, 1\text{H}, \, J = 5.4 \,\text{Hz}, \, \text{CH}), \, 5.38 \,(\text{br s}, \, 1\text{H}, \, \text{CH}), \, 6.52 \,(\text{s}, \, 1\text{H}, \, =\text{CH}), \, 6.55 \,(\text{s}, \, 1\text{H}, \, =\text{CH}), \, 7.23, \, 7.26 \,(\text{d}, \, 4\text{H}, \, J = 8.0 \,\text{Hz}, \, \text{Ar} - \text{H}); \, \text{Mass} \, (\text{ES}+) \, m/z \, \, 416.27 \,\, (\text{M}^+ + 1). \,\, \text{Oxalate salt: mp} \, 220 - 221 \,\,^{\circ}\text{C}; \, \text{Anal.} \,\, [\text{C}_{23}\text{H}_{33}\text{N}_{3}\text{O}_{4} \cdot 2(\text{CO}_{2}\text{H})_{2}] \,\, \text{C}, \,\, \text{H}, \,\, \text{N}.$

5.18. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (4A3B3C1) (5:1)

The product was obtained as colourless oil (57%); IR (neat, cm⁻¹) 1729 (CO₂Bu-n), 3400 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.84$ (t, 6H, J = 7.2 Hz, $2 \times$ CH₃), 1.21–1.32 (m, 4H, $2 \times$ CH₂), 1.45–1.55 (m, 4H, $2 \times$ CH₂) 2.28 (s, 6H, $2 \times$ NCH₃), 2.38–2.82 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 3.09–3.15 (m, 4H, $2 \times$ NCH₂), 4.02–4.12 (m, 2t merged, 4H, J = 6.6 Hz, $2 \times$ OCH₂), 5.11 (s, 4H, $2 \times$ OCH₂O), 5.29, 5.33 (d, 1H, J = 7.8 Hz, CH), 5.46, 5.50 (d, 1H, J = 7.8 Hz, CH), 6.47 (s, 1H, =CH), 6.51 (s, 1H, =CH), 7.01, 7.05 (d, 4H, J = 8.8 Hz, Ar–H), 7.32–7.45 (m, 10H, Ar–H), 7.70, 7.74 (d, 4H, J = 8.8 Hz, Ar–H); Mass (FAB+) m/z 508 (M⁺+1). Oxalate salt: mp 196–197 °C; Anal. [C₂₉H₃₇N₃-O₅·2(CO₂H)₂] C, H, N.

5.19. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (4A4B3C1) (9:1)

The product was obtained as colourless oil (50%); IR (neat) 1730 (CO₂Bu-*n*), 3329 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 0.87 (t, 6H, J = 7.2 Hz, 2 × CH₃), 1.23–1.34 (m, 4H, 2 × CH₂), 1.50–1.57 (m, 4H, 2 × CH₂) 2.28 (s, 3H, NCH₃), 2.31 (s, 3H, NCH₃), 2.48–2.83 (m, 18H, 8 × NCH₂ and 2 × CH), 3.11–3.18 (m, 4H, 2 × NCH₂), 4.05 (t, 4H, J = 6.6 Hz, 2 × OCH₂), 5.33, 5.37 (d, 1H, J = 8.0 Hz, CH), 5.45, 4.49 (d, 1H, J = 7.8 Hz, CH), 6.72 (s, 2H, 2 × = CH), 7.32–7.50 (m, 6H, Ar–H), 7.69–7.74 (m, 2H, Ar–H); Mass (EI) m/z 435 (M⁺). Oxalate salt: mp 208–210 °C; Anal. [C₂₂H₃₀ClN₃O₄·2(CO₂H)₂] C, H, N.

5.20. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (4A5B3C1) (5:1)

The product was obtained as colourless oil (50%); IR (neat) 1730 (CO₂Bu-*n*), 3330 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 0.84 (t, 6H, J = 7.2 Hz, 2 × CH₃), 1.21–1.32 (m, 4H, 2 × CH₂), 1.48–1.55 (m, 4H, 2 × CH₂) 2.29 (s, 6H, 2 × NCH₃), 2.48–2.83 (m, 18H, 8 × NCH₂ and 2 × CH), 3.10–3.16 (m, 4H, 2 × NCH₂), 4.07 (m, 4H, 2 × OCH₂), 5.30, 5.32 (d, 1H, J = 4.2 Hz, CH), 5.45, 5.47 (d, 1H, J = 4.2 Hz, CH), 6.55 (s, 1H, =CH), 7.40, 7.44 (d, 4H, J = 8.4 Hz, Ar–H), 7.71,

7.75 (d, 4H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 436.73 (M⁺+1), 458.67 (M⁺+Na). Oxalate salt: mp >225 °C; Anal. [C₂₂H₃₀ClN₃O₄·2(CO₂H)₂] C, H, N.

5.21. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydro-xy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (4A6B3C1) (5:1)

The product was obtained as pale yellow oil (52%); IR (neat, cm⁻¹) 1729 (CO₂Bu-*n*), 3329 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.86$ (t, 6H, J = 7.2 Hz, $2 \times$ CH₃), 1.23–1.34 (m, 4H, $2 \times$ CH₂), 1.50–1.57 (m, 4H, $2 \times$ CH₂), 2.28 (s, 3H, NCH₃), 2.31 (s, 3H, NCH₃), 2.48–2.83 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 3.11–3.18 (m, 4H, $2 \times$ NCH₂), 4.04 (t, 4H, J = 6.6 Hz, $2 \times$ OCH₂), 5.32, 5.36 (d, 1H, J = 8.0 Hz, CH), 5.45, 5.49 (d, 1H, J = 7.8 Hz, CH), 6.70 (s, 1H, CH), 6.72 (s, 1H, CH), 7.31, 7.36 (dd, 2H, $J_1 = 2.0$ Hz, $J_2 = 8.4$ Hz, Ar–H), 7.50, 7.51 (d, 2H, J = 1.8 Hz, Ar–H), 7.66, 7.70 (m, 2H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 470.80 (M⁺+1), 492.73 (M⁺+Na). Oxalate salt: mp 208–210 °C; Anal. [C₂₂H₂₉Cl₂N₃O₄·2(CO₂H)₂H₂O] C, H, N.

5.22. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)-propionic acid *tert*-butyl ester (4A1B4C1) (5:1)

The product was obtained as colourless oil (61%); IR (neat, cm⁻¹) 1726 (CO₂Bu-t), 3398 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.36 (s, 9H, C(CH₃)₃), 1.42 (s, 9H, C(CH₃)₃), 2.23 (s, 3H, NCH₃), 2.25 (s, 3H, NCH₃), 2.45–2.80 (m, 18H, 8 × NCH₂ and 2 × CH), 3.01–3.07 (m, 4H, 2 × NCH₂), 5.24, 5.27 (d, 1H, J = 7.8 Hz, CH), 5.31, 5.34 (d, 1H, J = 7.8 Hz, CH), 6.55 (s, 1H, =CH), 6.58 (s, 1H, =CH), 7.42–7.44 (m, 6H, Ar–H), 7.75–7.81 (m, 4H, Ar–H); Mass (EI) m/z 401 (M⁺). Oxalate salt: mp 190–192 °C; Anal. [C₂₂H₃₁N₃O₄·2(CO₂H)₂] C, H, N.

5.23. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-p-tolyl-isoxazol-5-yl)-propionic acid-*tert*-butyl ester (4A2B4C1) (5:1)

The product was obtained as white solid (54%), mp 100–102 °C; IR (KBr, cm⁻¹) 1722 (CO₂Bu-t), 3394 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.36 (s, 9H, C(CH₃)₃), 1.42 (s, 9H, C(CH₃)₃), 2.28 (s, 3H, 2 × NCH₃), 2.39 (s, 6H, 2 × CH₃), 2.49–2.85 (m, 18H, 8 × NCH₂ and 2 × CH), 2.98–3.28 (m, 4H, 2 × NCH₂), 5.24, 5.27 (d, 1H, J = 7.8 Hz, CH), 5.38, 5.40 (d, 1H, J = 7.8 Hz, CH), 6.52 (s, 1H, =CH), 6.54 (s, 1H, =CH), 7.21, 7.25 (d, 4H, J = 8.0 Hz, Ar–H); Mass (EI) m/z 415 (M⁺). Oxalate salt: mp. 176–178 °C; Anal. [C₂₃H₃₃N₃O₄·2(CO₂H)₂·H₂O] C, H, N.

5.24. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid-*tert*-butyl ester (4A3B4C1) (5:1)

The product was obtained as white solid (58%), mp 135–137 °C; IR (KBr, cm⁻¹) 1728 (CO₂Bu-*t*), 3398 (OH); ¹H

NMR (CDCl₃, 200 MHz) $\delta = 1.28$ (s, 9H, C(CH₃)₃), 1.38 (s, 9H, C(CH₃)₃), 2.22 (s, 3H, NCH₃), 2.26 (s, 3H, NCH₃), 2.32–2.80 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 2.96–2.99 (m, 4H, $2 \times$ NCH₂), 5.04 (s, 4H, $2 \times$ OCH₂O), 5.16, 5.19 (d, 1H, J = 7.4 Hz, CH), 5.29, 5.31 (d, 1H, J = 7.4 Hz, CH), 6.41 (s, 1H, =CH), 6.44 (s, 1H, =CH), 6.94, 6.98 (d, 4H, J = 8.8 Hz, Ar–H), 7.25–7.39 (m, 10H, Ar–H), 7.63, 7.67 (d, 4H, J = 8.8 Hz, Ar–H); Mass (EI) m/z 507 (M⁺). Oxalate salt: mp 189–191 °C; Anal. [C₂₉H₃₇N₃O₅·2(CO₂H)₂] C, H, N.

5.25. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid *tert*-butyl ester (4A4B4C1)

The product was obtained as white solid (65%), mp 105–107 °C; IR (KBr, cm⁻¹) 1724 (CO₂Bu-t), 3434 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.37 (s, 9H, C(CH₃)₃), 1.46 (s, 9H, C(CH₃)₃), 2.29 (s, 6H, 2 × NCH₃), 2.48–2.83 (m, 18H, 8 × NCH₂ and 2 × CH), 3.06–3.10 (m, 4H, 2 × NCH₂), 5.26, 5.30 (d, 1H, J = 7.6 Hz, CH), 5.40, 5.44 (d, 1H, J = 7.8 Hz, CH), 6.72 (s, 1H, =CH), 6.73 (s, 1H, =CH), 7.30–7.51 (m, 6H, Ar–H), 7.69–7.73 (m, 2H, Ar–H); Mass (EI) m/z 435 (M⁺). Oxalate salt: mp 174–176 °C; Anal. [C₂₂H₃₀ClN₃O₄·2(CO₂H)₂] C, H, N.

5.26. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid *tert*-butyl ester (4A5B4C1) (5:1)

The product was obtained as white solid (59%), mp 105–107 °C; IR (KBr, cm⁻¹) 1723 (CO₂Bu-*t*), 3485 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.36 (s, 9H, C(CH₃)₃), 1.45 (s, 9H, C(CH₃)₃), 1.46 (s, 9H, C(CH₃)₃), 2.27 (s, 6H, 2 × NCH₃), 2.47–2.81 (m, 18H, 8 × NCH₂ and 2 × CH), 3.03–3.07 (m, 4H, 2 × NCH₂), 5.31, 5.33 (d, 1H, J = 4.2 Hz, CH), 5.40, 5.42 (d, 1H, J = 4.2 Hz, CH), 6.50 (s, 1H, =CH), 6.55 (s, 1H, =CH), 7.39, 7.43 (d, 4H, J = 8.4 Hz, Ar–H), 7.71, 7.75 (d, 4H, J = 8.4 Hz, Ar–H); ¹³C NMR (CDCl₃, 50.32 MHz) δ = 28.19, 28.34, 46.22, 47.76, 53.65, 55.26, 55.41, 56.69, 60.03, 69.49, 70.40, 82.37, 100.03, 100.58, 127.90, 128.03, 128.44, 129.54, 136.30, 161.53, 170.24, 174.06, 174.88; Mass (FAB+) m/z 436 (M⁺+1). Oxalate salt: mp 184–185 °C; Anal. [C₂₂H₃₀ClN₃O₄·2(CO₂H)₂] C, H, N.

5.27. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid *tert*-butyl ester (4A6B4C1) (3:1)

The product was obtained as white solid (61%), mp 105–107 °C; IR (KBr, cm⁻¹) 1721 (CO₂Bu-t), 3402 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.37 (s, 9H, C(CH₃)₃), 1.46 (s, 9H, C(CH₃)₃), 2.29 (s, 6H, 2 × NCH₃), 2.39–2.81 (m, 18H, 8 × NCH₂ and 2 × CH), 3.05–3.09 (m, 4H, 2 × NCH₂), 5.26, 5.29 (d, 1H, J = 7.2 Hz, CH), 5.40, 5.42 (d, 1H, J = 7.2 Hz, CH), 6.70 (s, 1H, =CH), 6.72 (s, 1H, =CH), 7.35, 7.39 (dd, 4H, J₁ = 2.0 Hz, J₂ = 8.4 Hz, Ar–H), 7.50–7.51 (d, 2H, J = 1.6 Hz, Ar–H), 7.65, 7.69 (d, 2H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 480.80

 (M^++1) . Oxalate salt: mp 191–192 °C; Anal. $[C_{22}H_{29}Cl_2N_3O_4\cdot 2(CO_2H)_2]$ C, H, N.

5.28. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)-propionitrile (4A1B5C1) (3:1)

The product was obtained as yellow oil (51%); IR (neat, cm⁻¹) 2256 (CN), 3390 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.39–2.98 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 3.29–3.34 (m, 4H, $2 \times$ NCH₂), 5.27, 5.30 (m, 2H, $2 \times$ CH), 6.70 (s, 1H, =CH), 6.75 (s, 1H, =CH), 7.44–7.47 (m, 6H, Ar–H), 7.78–7.82 (m, 4H, Ar–H); ¹³C NMR (CDCl₃, 50.32 MHz) δ = 35.12, 35.92, 46.13, 53.52, 53.93, 55.22, 56.75, 57.14, 66.55, 67.66, 100.96, 118.51, 119.13, 127.24, 128.90, 129.41, 130.70, 162.90, 172.24, 172.47; Mass (EI) m/z 326 (M⁺). Oxalate salt: mp 169–170 °C; Anal. [C₁₈H₂₄N₄O₂·2(CO₂H)₂] C, H, N.

5.29. 3-Hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-3-(3-p-tolyl-isoxazol-5-yl)-propionitrile (4A2B5C1) (3:1)

The product was obtained as yellow oil (50%); IR (neat, cm⁻¹) 2248 (CN), 3354 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.40 (s, 6H, 2 × CH₃), 2.50–3.04 (m, 18H, 8 × NCH₂ and 2 × CH), 3.29–3.34 (m, 4H, 2 × NCH₂), 5.25–5.28 (m, 2H, 2 × CH), 6.67 (s, 1H, =CH), 6.72 (s, 1H, =CH), 7.25. 7.29 (d, 4H, J = 8.0 Hz, Ar–H), 7.68, 7.72 (m, 4H, J = 8.0 Hz, Ar–H); Mass (EI) m/z 340 (M⁺). Oxalate salt: mp 180–182 °C; Anal. [C₁₉H₂₄N₄O₂·2(CO₂-H)₂·H₂O] C, H, N.

5.30. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionitrile (4A3B5C1) (3:1)

The product was obtained as yellow oil (65%); IR (neat, cm⁻¹) 2247 (CN), 3354 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.43–2.99 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 3.29–3.36 (m, 4H, $2 \times$ NCH₂), 5.11 (s, 4H, $2 \times$ OCH₂O), 5.39–5.45 (m, 2H, $2 \times$ CH), 6.64 (s, 1H, =CH), 6.67 (s, 1H, =CH), 7.25. 7.29 (d, 4H, J = 8.0 Hz, Ar–H), 7.31–7.45 (m, 10H, Ar–H), 7.68, 7.72 (m, 4H, J = 8.0 Hz, Ar–H); Mass (ES+) m/z 433.80 (M⁺+1), 455.53 (M⁺+Na). Oxalate salt: mp 119–121 °C; Anal. [C₂₅H₂₈N₄O₃·2(CO₂H)₂] C, H, N.

5.31. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionitrile (4A4B5C1) (3:1)

The product was obtained as yellow oil (47%); IR (neat, cm⁻¹) 2257 (CN), 3390 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29, 2.31 (2s, 6H, 2 × NCH₃), 2.45–2.85 (m, 18H, 8 × NCH₂ and 2 × CH), 3.08–3.15 (m, 4H, 2 × NCH₂), 5.28–5.31 (m, 2H, 2 × CH), 6.86 (s, 1H, =CH), 6.90 (s, 1H, =CH), 7.35–7.52 (m, 6H, Ar–H),

7.72–7.76 (m, 2H, Ar–H); Mass (FAB+) m/z 361 (M⁺+1). Oxalate salt: mp 156–158 °C; Anal. [C₁₈H₂₁ClN₄O₂·2(CO₂H)₂] C, H, N.

5.32. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionitrile (4A5B5C1) (3:1)

The product was obtained as yellow oil (49%); IR (neat, cm⁻¹) 2257 (CN), 3439 (OH); ¹H NMR (CDCl₃, 300 MHz) δ = 2.29 (s, 3H, NCH₃), 2.31 (s, 3H, NCH₃), 2.50–2.86 (m, 18H, $8 \times$ NCH₂ and $2 \times$ CH), 3.04–3.16 (m, 4H, $2 \times$ NCH₂), 5.28, 5.29 (d, 1H, J = 3.6 Hz, CH), 5.43, 5.44 (d, 1H, J = 3.6 Hz, CH), 6.86 (s, 1H, =CH), 6.90 (s, 1H, =CH), 7.48–7.51 (d, 4H, J = 8.4 Hz, Ar–H), 7.81-7.84 (d, 4H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 361 (M⁺+1). Oxalate salt: mp 180–181 °C; Anal. [C₁₈H₂₁ClN₄O₂·2(CO₂H)₂] C, H, N.

5.33. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-(4-methyl-piperazin-1-ylmethyl)-propionitrile (4A6B5C1) (3:1)

The product was obtained as yellow oil (47%); IR (neat, cm⁻¹) 2251 (CN), 3390 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29 (s, 6H, 2×NCH₃), 2.44–2.96 (m, 18H, 8×NCH₂ and 2×CH), 3.31–3.36 (m, 4H, 2×NCH₂), 5.29–5.31 (m, 2H, 2×CH), 6.86 (s, 1H, =CH), 6.90 (s, 1H, =CH), 7.33, 7.37 (dd, 4H, J_1 = 2.0 Hz, J_2 = 8.4 Hz, Ar–H), 7.52, 7.53 (d, 2H, J = 1.6 Hz, Ar–H), 7.68, 7.72 (d, 2H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 395 (M⁺+1). Oxalate salt: mp 163–164 °C; Anal. [C₁₈H₂₀Cl₂N₄O₂·2(CO₂H)₂] C, H, N.

5.34. 2-(4-Acetyl-piperazin-1-ylmethyl)-3-hydroxy-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C2) (5:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm⁻¹) 1731 (CO₂Et and COMe), 3320 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.16–1.29 (m, 2t merged, 6H, J = 7.0 Hz, 2 × CH₃), 2.04 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.52–2.65 (m, 8H, 4 × NCH₂), 2.80–3.26 (m, 4H, NCH₂ and 2 × CH), 3.47 (t, 4H, J = 4.6 Hz, 2 × NCH₂), 3.63 (t, 4H, J = 4.6 Hz, 2 × NCH₂), 4.05–4.16 (m, 2q merged, 4H, 2 × OCH₂), 5.30–5.36 (m, 2H, 2 × CH), 6.58 (s, 1H, =CH), 7.43–7.46 (m, 6H, Ar–H), 7.77–7.81 (m, 4H, Ar–H); Mass (ES+) m/z 402.47 (M⁺+1), 423.80 (M⁺+Na). Oxalate salt: mp 90–92 °C; Anal. [C₂₁H₂₇N₃O₅·2(CO₂H)₂] C, H, N.

5.35. 2-(4-Acetyl-piperazin-1-ylmethyl)-3-[3-(4-benzyl-oxy-phenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A3B2C2) (6:1)

The product was obtained as pale yellow oil (53%): IR (neat, cm⁻¹) 1728 (CO₂Et and COMe), 3401 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.19-1.29$ (m, 2t merged, 6H, J = 7.0 Hz, $2 \times$ CH₃), 2.05 (s, 3H, COCH₃), 2.08 (s,

3H, COCH₃), 2.52–2.66 (m, 8H, $4 \times NCH_2$), 2.71–2.85 (m, 4H, $2 \times NCH_2$), 2.97–3.14 (m, 2H, $2 \times CH$), 3.48 (t, 4H, J = 4.8 Hz, $2 \times NCH_2$), 3.62 (t, 4H, J = 4.8 Hz, $2 \times NCH_2$), 4.02–4.15 (m, 2q merged, 4H, J = 7.0 Hz, $2 \times OCH_2$), 5.12 (s, 4H, $2 \times OCH_2O$), 5.32, 5.35 (d, 2H, J = 7.2 Hz, CH), 6.53 (s, 1H, =CH), 7.02, 7.06 (d, 4H, J = 8.6 Hz, Ar–H), 7.33–7.46 (m, 10H, Ar–H), 7.70, 7.74 (d, 4H, J = 8.6 Hz, Ar–H); Mass (FAB+) m/z 508 (M⁺+1). Oxalate salt: mp 168–170 °C; Anal. [C₂₈H₃₃N₃O₆·2(CO₂H)₂] C, H, N.

5.36. 2-(4-Acetyl-piperazin-1-ylmethyl)-3-[3-(2-chlorophenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A4B2C2) (6:1)

The product was obtained as pale yellow oil (57%): IR (neat, cm⁻¹) 1731 (CO₂Et and COMe), 3443 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.19–1.30 (m, 2t merged, 6H, J = 7.0 Hz, 2 × CH₃), 1.96 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 2.38–2.67 (m, 8H, 4 × NCH₂), 2.74–2.90 (m, 4H, 2 × NCH₂), 2.92–3.19 (m, 2H, 2 × CH), 3.46 (t, 4H, J = 4.6 Hz, 2 × NCH₂), 3.63 (t, 4H, J = 4.6 Hz, 2 × NCH₂), 4.02–4.15 (m, 2q merged, 4H, J = 7.0 Hz, 2 × OCH₂), 5.31–5.38 (m, 2H, CH), 6.53 (s, 1H, =CH), 6.56 (s, 1H, =CH), 7.34–7.51 (m, 6H, Ar–H), 7.72–7.76 (m, 2H, Ar–H); Mass (ES+) m/z 436.67 (M⁺+Na). Oxalate salt: mp 126–128 °C; Anal. [C₂₁H₂₆ClN₃O₆·2(CO₂H)₂] C, H, N.

5.37. 2-(4-Acetyl-piperazin-1-ylmethyl)-3-[3-(4-chlorophenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A5B2C2) (6:1)

The product was obtained as pale yellow oil (55%): IR (neat, cm⁻¹) 1731 (CO₂Et and COMe), 3444 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.16–1.29 (m, 2t merged, 6H, J = 7.0 Hz, CH₃), 2.04 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 2.52–2.67 (m, 8H, 4×NCH₂), 2.74–2.90 (m, 4H, 2×NCH₂), 2.99–3.26 (m, 2H, 2×CH), 3.46 (t, 4H, J = 4.8 Hz, 2×NCH₂), 3.63 (t, 4H, J = 4.8 Hz, 2×NCH₂), 4.08–4.18 (m, 2q merged, 4H, J = 7.0 Hz, 2×OCH₂), 5.33, 5.36 (d, 2H, J = 7.2 Hz, 2×CH), 6.53 (s, 1H, =CH), 6.56 (s, 1H, =CH), 7.41, 7.45 (d, 2H, J = 8.6 Hz, Ar–H), 7.71, 7.75 (d, 2H, J = 8.6 Hz, Ar–H); Mass (ES+) m/z 458.00 (M⁺+Na). Oxalate salt: mp 78–81 °C; Anal. [C₂₁H₂₆ClN₃O₅·2(CO₂H)₂] C, H, N.

5.38. 2-(4-Acetyl-piperazin-1-ylmethyl)-3-[3-(2,4-dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A6B2C2) (3:1)

The product was obtained as pale yellow oil (52%): IR (neat, cm⁻¹) 1728 (CO₂Et and COMe), 3394 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.16–130 (m, 6H, 2 × CH₃), 2.09 (s, 3H, COCH₃), 2.13 (s, 3H, COCH₃), 2.50–2.58 (m, 8H, 4 × NCH₂), 2.63–2.68 (m, 4H, 2 × NCH₂), 3.09–3.15 (m, 2H, 2 × CH), 3.48 (t, 4H, J = 4.8 Hz, 2 × NCH₂), 3.64 (t, 4H, J = 4.8 Hz, 2 × NCH₂), 4.12–4.21 (m, 4H, 2 × OCH₂), 5.35, 5.38 (d, 2H, J = 7.4 Hz, CH), 5.42, 5.45 (d, 2H, J = 7.4 Hz,

CH), 6.70 (s, 1H, =CH), 6.73 (s, 1H, =CH), 7.32, 7.36 (dd, 2H, J = 1.8 Hz, J = 8.4 Hz, Ar–H), 7.51, 7.52 (d, 2H, J = 1.6 Hz, Ar–H), 7.66, 7.70 (d, 2H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 470.40 (M⁺+1), 492.00 (M⁺+Na). Oxalate salt: mp 85–88 °C; Anal. [C₂₁H₂₅Cl₂N₃O₆·2(CO₂H)₂] C, H, N.

5.39. 3-Hydroxy-2-[4-(4-methoxy-phenyl)-piperazin-1-ylmethyl]-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C3) (5:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm⁻¹) 1729 (CO₂Et), 3320 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.15–1.27 (m, 2t merged, 6H, J = 7.0 Hz, $2 \times$ CH₃), 2.52–2.65 (m, 8H, $4 \times$ NCH₂), 2.67–2.93 (m, 12H, $6 \times$ NCH₂), 3.09–3.21 (m, $4 \times$ NCH₂ and $2 \times$ CH), 3.75 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 4.13 (m, 2q merged, 4H, $2 \times$ OCH₂), 5.34, 5.38 (d, 1H, J = 7.4 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.4 Hz, CH), 6.56 (s, 1H, =CH), 6.59 (s, 1H, =CH), 6.81–6.91 (m, 8H, Ar–H), 7.43–7.46 (m, 6H, Ar–H), 7.77–7.81 (m, 4H, Ar–H); Mass (FAB+) m/z 466 (M⁺+1). Oxalate salt: mp 143–145 °C; Anal. [C₂₆H₃₁N₃O₅:2(CO₂H)₂] C, H, N.

5.40. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(4-methoxy-phenyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A3B2C3) (5:1)

The product was obtained as pale yellow oil (61%): IR (neat, cm⁻¹) 1724 (CO₂Et), 3419 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.15–1.30 (m, 2t merged, 6H, J = 7.0 Hz, $2 \times$ CH₃), 2.70–2.92 (m, 12H, $6 \times$ NCH₂), 3.09–3.20 (m, $4 \times$ NCH₂ and $2 \times$ CH), 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.14 (m, 2q merged, 4H, $2 \times$ OCH₂), 5.11 (s, 4H, $2 \times$ OCH₂O), 5.34, 5.38 (d, 1H, J = 7.4 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.4 Hz, CH), 6.52 (s, 1H, =CH), 6.53 (s, 1H, =CH), 6.85–6.87 (m, 8H, Ar–H), 7.01, 7.05 (d, 4H, J = 8.8 Hz, Ar–H), 7.32–7.45 (m, 10H, Ar–H), 7.71-7.75 (d, 4H, J = 8.8 Hz, Ar–H); Mass (FAB+) m/z 572 (M⁺+1). Oxalate salt: mp 176–178 °C; Anal. [C₃₃H₃₇N₃O₆·2(CO₂H)₂] C, H, N.

5.41. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(4-methoxy-phenyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A4B2C3) (5:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1722 (CO₂Et), 3401 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.15–1.29 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.70–2.93 (m, 12H, 6 × NCH₂), 3.09–3.20 (m, 4 × NCH₂ and 2 × CH), 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.08–4.19 (m, 2q merged, 4H, 2 × OCH₂), 5.34, 5.38 (d, 1H, J = 7.4 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.4 Hz, CH), 6.56 (s, 1H, =CH), 6.57 (s, 1H, =CH), 6.56 (s, 1H, =CH), 6.82–6.88 (m, 8H, Ar–H), 7.44–7.68 (m, 8H, Ar–H); Mass (ES+) m/z 500.38 (M⁺+1), 522.67 (M⁺+Na). Oxalate salt: mp 120–121 °C; Anal. [C₂₆H₃₀ClN₃O₅·2(CO₂H)₂] C, H, N.

5.42. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(4-methoxy-phenyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A5B2C3) (5:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm⁻¹) 1731 (CO₂Et), 3373 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.15–1.29 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.70–2.93 (m, 12H, 6 × NCH₂), 3.09–3.20 (m, 4 × NCH₂ and 2 × CH), 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.06–4.17 (m, 2q merged, 4H, 2 × OCH₂), 5.34, 5.38 (d, 1H, J = 7.4 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.4 Hz, CH), 6.56 (s, 1H, =CH), 6.57 (s, 1H, =CH), 6.85–6.91 (m, 8H, Ar–H), 7.40, 7.44 (d, 4H, J = 8.6 Hz, Ar–H), 7.71–7.75 (d, 4H, J = 8.6 Hz, Ar–H); Mass (ES+) m/z 500.67 (M⁺+1), 522.67 (M⁺+Na). Oxalate salt: mp 163–164 °C; Anal. [C₂₆H₃₀ClN₃O₅·2(CO₂H)₂] C, H, N.

5.43. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(4-methoxy-phenyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A6B2C3) (5:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm $^{-1}$) 1730 (CO₂Et), 3389 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.16-1.28$ (m, 2t merged, 6H, $J = 7.2 \,\mathrm{Hz}, \ 2 \times \mathrm{CH}_3$, 2.68–2.94 (m, 12H, $6 \times \mathrm{NCH}_2$), 3.09-3.22 (m, $4 \times NCH_2$ and $2 \times CH$), 3.77 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.10–4.19 (m, 2q merged, 4H, $2 \times OCH_2$), 5.35, 5.39 (d, 1H, J = 7.4 Hz, CH), 5.42, 5.46 (d, 1H, J = 7.4 Hz, CH), 6.73 (s, 1H, =CH), 6.74 (s,1H, =CH), 6.85–6.87 (m, 8H, Ar–H), 7.31, 7.34 (dd, 4H, $J_1 = 2.0 \,\text{Hz}, \ J_2 = 8.4 \,\text{Hz}, \ \text{Ar-H}), \ 7.50, \ 7.51 \ \text{(d, 2H,} \ J = 1.8 \,\text{Hz}, \ \text{Ar-H}), \ 7.66, \ 7.70 \ \text{(d, 2H,} \ J = 8.4 \,\text{Hz}, \ \text{Ar-Hz}$ H); 13 C NMR (CDCl₃, 50.32 MHz) $\delta = 14.43$, 45.54, 46.94, 51.04, 53.96, 56.62, 59.62, 59.61, 61.76, 70.34, 103.34, 114.94, 118.91, 127.30, 127.95, 130.68, 132.13, 134.03, 136.69, 145.55, 153.64, 160.35, 171.14, 173.04; Mass (ES+) m/z 534.53 (M⁺+1), 556.80 (M⁺+Na). Oxalate salt: mp 95–98 °C; Anal. $[C_{26}H_{29}Cl_2N_3]$ $O_5 \cdot 2(CO_2H)_2$] C, H, N.

5.44. 2-[4-(4-Fluoro-phenyl)-piperazin-1-ylmethyl]-3-hydroxy-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C4) (3:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1730 (CO₂Et), 3401 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.16–1.27 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.67–2.93 (m, 12H, 6 × NCH₂), 3.12–3.21 (m, 10H, 4 × NCH₂ and 2 × CH), 4.09–4.16 (m, 2q merged, 4H, 2 × OCH₂), 5.35, 5.38 (d, 1H, J = 7.6 Hz, CH), 5.42, 5.45 (d, 1H, J = 7.6 Hz, CH), 6.57 (s, 1H, =CH), 6.59 (s, 1H, =CH), 6.82–7.01 (m, 8H, Ar–H), 7.43–7.46 (m, 6H, Ar–H), 7.77–7.82 (m, 4H, Ar–H); Mass (ES+) m/z 476.07 (M⁺+Na). Oxalate salt: mp 146–148 °C; Anal. C₂₅H₂₈FN₃O₄·2(CO₂H)₂] C, H, N.

5.45. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-[4-(4-fluoro-phenyl)-piperazin-1-ylmethyl]-3-hydroxy-propionic acid ethyl ester (4A3B2C4) (5:1)

The product was obtained as pale yellow oil (51%): IR (neat, cm⁻¹) 1729 (CO₂Et), 3422 (OH); ¹H NMR

(CDCl₃, 200 MHz) $\delta = 1.16-1.27$ (m, 2t merged, 6H, J = 7.2 Hz, $2 \times \text{CH}_3$), 2.67-2.93 (m, 6H, $3 \times \text{NCH}_2$), 3.11-3.21 (m, 5H, $2 \times \text{NCH}_2$ and CH), 4.08-4.16 (m, 2q merged, 4H, $2 \times \text{OCH}_2$), 5.12 (s, 2H, OCH₂), 5.34, 5.38 (d, 1H, J = 7.6 Hz, CH), 6.54 (s, 1H, =CH), 6.82-7.06 (m, 7H, Ar–H), 7.33-7.46 (m, 4H, Ar–H), 7.71, 7.75 (d, 2H, J = 8.6 Hz, Ar–H); $^{13}\text{C NMR}$ (CDCl₃, 50.32 MHz) $\delta = 14.54$, 46.89, 50.59, 52.69, 53.82, 59.32, 70.26, 70.48, 100.04, 115.69, 116.25, 114.47, 118.61, 122.18, 127.88, 128.53, 128.68, 129.06, 137.02, 155.45, 160.22, 160.64, 162.20, 171.81, 173.27; Mass (ESMS) m/z 559.67 (M⁺+1), 582.73 (M⁺+Na). Oxalate salt: mp 126-128 °C; Anal. [C₃₂H₃₄FN₃O₅·2(CO₂H)₂] C, H, N.

5.46. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-[4-(4-fluoro-phenyl)-piperazin-1-ylmethyl]-3-hydroxy-propionic acid ethyl ester (4A4B2C4) (6:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm⁻¹) 1736 (CO₂Et), 3435 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.15–1.28 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.66–2.93 (m, 12H, 6 × NCH₂), 3.13–3.21 (m, 10H, 4 × NCH₂ and 2 × CH), 4.08–4.17 (m, 2q merged, 4H, 2 × OCH₂), 5.33, 5.36 (d, 1H, J = 7.6 Hz, CH), 5.41, 5.44 (d, 1H, J = 7.6 Hz, CH), 6.52 (s, 1H, =CH), 6.56 (s, 1H, =CH), 6.81–7.02 (m, 8H, Ar–H), 7.43–7.67 (m, 8H, Ar–H); Mass (ES+) m/z 488.87 (M⁺+1). Oxalate salt: mp 149–150 °C; Anal. [C₂₅H₂₇ClFN₃O₄·2(CO₂H)₂] C, H, N.

5.47. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-2-[4-(4-fluoro-phenyl)-piperazin-1-ylmethyl]-3-hydroxy-propionic acid ethyl ester (4A5B2C4) (6:1)

The product was obtained as pale yellow oil (61%): IR (neat, cm⁻¹) 1739 (CO₂Et), 3445 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.16–1.27 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.67–2.93 (m, 12H, 6 × NCH₂), 3.12–3.20 (m, 10H, 4 × NCH₂ and 2 × CH), 4.13 (m, 2q merged, 4H, 2 × OCH₂), 5.34, 5.37 (d, 1H, J = 7.6 Hz, CH), 5.41, 5.44 (d, 1H, J = 7.6 Hz, CH), 6.53 (s, 1H, =CH), 6.56 (s, 1H, =CH), 6.84–7.01 (m, 8H, Ar–H), 7.40, 7.44 (d, 4H, J = 8.6 Hz, Ar–H), 7.71, 7.75 (d, 4H, J = 8.6 Hz, Ar–H); Mass (ES+) m/z 488.00 (M⁺+1), 509.93 (M⁺+Na). Oxalate salt: mp 180–182 °C; Anal. [C₂₅H₂₇ClFN₃O₄·2(CO₂H)₂] C, H, N.

5.48. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-2-[4-(4-fluoro-phenyl)-piperazin-1-ylmethyl]-3-hydroxy-propionic acid ethyl ester (4A6B2C4) (6:1)

The product was obtained as pale yellow oil (59%): IR (neat, cm⁻¹) 1729 (CO₂Et), 3383 (OH); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.16-1.28$ (m, 2t merged, 6H, J = 7.2 Hz, $2 \times$ CH₃), 2.68–2.94 (m, 12H, $6 \times$ NCH₂), 3.12–3.22 (m, 10H, $4 \times$ NCH₂ and $2 \times$ CH), 4.13 (m, 2q merged, 4H, $2 \times$ OCH₂), 5.36, 5.39 (d, 1H, J = 7.6 Hz, CH), 5.42, 5.45 (d, 1H, J = 7.6 Hz, CH), 6.73 (s, 1H, =CH), 6.83–7.01 (m, 8H, Ar–H),

7.31, 7.36 (dd, 4H, $J_1 = 2.0 \,\text{Hz}$, $J_2 = 8.4 \,\text{Hz}$, Ar–H), 7.50, 7.51 (d, 2H, $J = 1.8 \,\text{Hz}$, Ar–H), 7.66–7.70 (d, 2H, $J = 8.4 \,\text{Hz}$, Ar–H); Mass (ES+) m/z 522.07 (M⁺+1), 544.33 (M⁺+Na). Oxalate salt: mp 167–168 °C; Anal. [C₂₅H₂₆Cl₂FN₃O₄·2(CO₂H)₂] C, H, N.

5.49. 3-Hydroxy-2-[4-(3-phenyl-allyl)-piperazin-1-yl-methyl]-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C5) (6:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1731 (CO₂Et), 3381 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.27 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.44–2.88 (m, 22H, 10 × NCH₂ and 2 × CH), 3.15–3.19 (m, 4H, 2 × NCH₂), 4.10 (m, 2q merged, 4H, 2 × OCH₂), 5.31, 5.35 (d, 1H, J = 7.0 Hz, CH), 5.38, 5.41 (d, 1H, J = 7.0 Hz, CH), 6.19–6.48 (m, 2t merged, 2H, J = 8.4 Hz, 2 × =CH), 6.48 (s, 2H, 2 × =CH), 6.57 (s, 1H, =CH), 6.58 (s, 1H, =CH), 7.22–7.45 (m, 16H, Ar–H), 7.77–7.81 (m, 4H, Ar–H); Mass (ES+) m/z 476.47 (M⁺+1), 498.07 (M⁺+Na). Oxalate salt: mp 192–194 °C (dec); Anal. [C₂₈H₃₃N₃O₄·2(CO₂-H)₂] C, H, N.

5.50. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(3-phenyl-allyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A3B2C5) (6:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1731 (CO₂Et), 3381 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.30 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.57–2.88 (m, 22H, 10 × NCH₂ and 2 × CH), 3.11–3.17 (m, 4H, 2 × NCH₂), 4.05–4.17 (m, 2q merged, 4H, 2 × OCH₂), 5.11 (s, 4H, 2 × OCH₂O), 5.30, 5.33 (d, 1H, J = 7.6 Hz, CH), 5.35, 5.38 (d, 1H, J = 7.6 Hz, CH), 6.19–6.30 (m, 2t merged, 2H, J = 6.6 Hz, 2 × =CH), 6.48 (s, 2H, 2 × =CH), 6.52 (s, 1H, =CH), 6.57 (s, 1H, =CH), 7.01, 7.05 (d, 4H, J = 8.4 Hz, Ar–H), 7.22–7.45 (m, 20H, Ar–H), 7.70–7.74 (d, 4H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 582 (M⁺+1). Oxalate salt: mp 205–206 °C; Anal. [C₃₅H₃₉N₃O₅·2(CO₂H)₂] C, H, N.

5.51. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(3-phenyl-allyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A4B2C5) (6:1)

The product was obtained as pale yellow oil (62%): IR (neat, cm⁻¹) 1735 (CO₂Et), 3445 (OH); ¹H NMR (CDCl₃, 300 MHz) δ = 1.16–1.27 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.50–2.91 (m, 22H, 10 × NCH₂ and 2 × CH), 3.13–3.17 (m, 4H, 2 × NCH₂), 4.07–4.14 (m, 2q merged, 4H, 2 × OCH₂), 5.31, 5.34 (d, 1H, J = 7.6 Hz, CH), 5.28–5.38 (m, 2H, 2 × CH), 6.12–6.30 (m, 2t merged, 2H, 2 × =CH), 6.48 (s, 2H, 2 × =CH), 6.55 (s, 1H, =CH), 6.60 (s, 1H, =CH), 6.75–6.85 (m, 8H, Ar–H), 7.30–7.67 (m, 18H, Ar–H); Mass (ES+) m/z 511.00 (M⁺+1). Oxalate salt: mp 197–199 °C; Anal. [C₂₈H₃₂ClN₃O₄·2(CO₂H)₂] C, H, N.

5.52. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(3-phenyl-allyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A5B2C5) (6:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1730 (CO₂Et), 3328 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.13–1.28 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.57–2.82 (m, 22H, 10 × NCH₂ and 2 × CH), 3.14–3.17 (m, 4H, 2 × NCH₂), 4.07–4.14 (m, 2q merged, 4H, 2 × OCH₂), 5.30, 5.33 (d, 1H, J = 7.6 Hz, CH), 5.28–5.38 (m, 2H, 2 × CH), 6.12–6.29 (m, 2t merged, 2H, 2 × =CH), 6.48 (s, 2H, 2 × =CH), 6.54 (s, 1H, =CH), 6.55 (s, 1H, =CH), 7.22–7.43 (m, 14H, Ar–H), 7.70–7.74 (d, 4H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 510 (M⁺+1). Oxalate salt: mp 207–209 °C; Anal. [C₂₈H₃₂ClN₃O₄·2(CO₂H)₂] C, H, N.

5.53. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-2-[4-(3-phenyl-allyl)-piperazin-1-ylmethyl]-propionic acid ethyl ester (4A6B2C5) (6:1)

The product was obtained as pale yellow oil (58%): IR (neat, cm⁻¹) 1730 (CO₂Et), 3358 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.14–1.28 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.57–2.87 (m, 22H, 10 × NCH₂ and 2 × CH), 3.14–3.17 (m, 4H, 2 × NCH₂), 4.05–4.21 (m, 2q merged, 4H, 2 × OCH₂), 5.32, 5.36 (d, 1H, J = 7.6 Hz, CH), 5.40, 5.44 (d, 1H, J = 7.6 Hz, CH), 5.28–5.38 (m, 2H, 2 × CH), 6.19–6.30 (m, 2t merged, 2H, 2 × =CH), 6.48 (s, 2H, 2 × =CH), 6.69 (s, 1H, =CH), 6.71 (s, 1H, =CH), 7.22–7.39 (m, 12H, Ar–H), 7.50, 7.51 (d, 2H, J = 1.8 Hz, Ar–H), 7.66-7.70 (d, 2H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 544.60 (M⁺+1), 566.93 (M⁺+Na). Oxalate salt: mp 207–209 °C; Anal. [C₂₈H₃₁Cl₂N₃O₄·2(CO₂H)₂] C, H, N.

5.54. 2-(4-Benzyl-piperidin-1-ylmethyl)-3-hydroxy-3-(3-phenyl-isoxazol-5-yl)-propionic acid ethyl ester (4A1B2C6)

The product was obtained as pale yellow oil (51%): IR (neat, cm⁻¹) 1732 (CO₂Et), 3384 (OH); Mass (ES+) m/z 449.80 (M⁺+1), 471.47 (M⁺+Na). Oxalate salt: mp 103–104 °C. Anal. [C₂₇H₃₂N₂O₄·(CO₂H)₂] C, H, N.

5.55. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-benzyl-piperidin-1-ylmethyl)-3-hydroxy-propionic acid ethyl ester (4A3B2C6)

The product was obtained as pale yellow oil (56%): IR (neat, cm⁻¹) 1730 (CO₂Et), 3418 (OH); Mass (ES+) m/z 449.80 (M⁺+1), 471.47 (M⁺+Na). Oxalate salt: mp 103–104 °C. Anal. [C₂₇H₃₂N₂O₄·(CO₂H)₂] C, H, N.

5.56. 2-(4-Benzyl-piperidin-1-ylmethyl)-3-[3-(2-chlorophenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A4B2C6)

The product was obtained as pale yellow oil (54%): IR (neat, cm⁻¹) 1729 (CO₂Et), 3358 (OH); Mass (FAB+)

m/z 483 (M⁺+1). Oxalate salt: mp 97–98 °C. Anal. $[C_{27}H_{31}ClN_2O_4:(CO_2H)_2]$ C, H, N.

5.57. 2-(4-Benzyl-piperidin-1-ylmethyl)-3-[3-(4-chlorophenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A5B2C6)

The product was obtained as pale yellow oil (55%): IR (neat, cm⁻¹) 1729 (CO₂Et), 3380 (OH); Mass (ES+) m/z 471.73 (M⁺+1). Oxalate salt: mp 150–153 °C. Anal. [C₂₇H₃₁ClN₂O₄·(CO₂H)₂] C, H, N.

5.58. 2-(4-Benzyl-piperidin-1-ylmethyl)-3-[3-(2,4-dichloro-phenyl)-isoxazol-5-yl]-3-hydroxy-propionic acid ethyl ester (4A6B2C6)

The product was obtained as pale yellow oil (54%): IR (neat, cm⁻¹) 1725 (CO₂Et), 3420 (OH); Mass (FAB+) m/z 505 (M⁺+1). Oxalate salt: mp 95–98 °C. Anal. [C₂₇H₃₀Cl₂N₂O₄·(CO₂H)₂] C, H, N.

5.59. 2-Diethylaminomethyl-3-hydroxy-3-(3-phenyl-iso-xazol-5-yl)-propionic acid ethyl ester (4A1B2C7) (2:1)

The product was obtained as pale yellow oil (52%): IR (neat, cm⁻¹) 1732 (CO₂Et), 3381 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.04–1.19 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.46–2.87 (m, 10H, 4 × NCH₂ and 2 × CH), 2.73–2.87 (m, 4H, 2 × NCH₂), 4.04–4.12 (m, 2q merged, 4H, J = 7.0 Hz, 2 × OCH₂), 5.27, 5.31 (d, 1H, J = 7.0 Hz, CH), 5.38, 5.41 (d, 1H, J = 7.0 Hz, CH), 6.46 (s, 1H, =CH), 6.58 (s, 1H, =CH), 7.42–7.45 (m, 6H, Ar–H), 7.77–7.81 (m, 4H, Ar–H); Mass (FAB+) m/z 347 (M⁺+1). Oxalate salt: mp 122–123 °C (dec); Anal. [C₁₉H₂₆N₂O₄·(CO₂H)₂] C, H, N.

5.60. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-diethylaminomethyl-3-hydroxy-propionic acid ethyl ester (4A3B2C7) (2:1)

The product was obtained as pale yellow oil (50%): IR (neat, cm⁻¹) 1725 (CO₂Et), 3354 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 0.99–1.19 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.52–3.18 (m, 14H, 6 × NCH₂ and 2 × CH), 3.72–3.79 (m, 2q merged, 4H, J = 7.0 Hz, 2 × OCH₂), 5.11 (s, 4H, 2 × OCH₂O), 5.28, 5.32 (d, 1H, J = 7.0 Hz, CH), 5.36, 5.39 (d, 1H, J = 7.0 Hz, CH), 6.45 (s, 1H, =CH), 6.52 (s, 1H, =CH), 7.01, 7.05 (d, 4H, J = 8.4 Hz, Ar–H), 7.32–7.42 (m, 10H, Ar–H), 7.70–7.74 (d, 4H, J = 8.4 Hz, Ar–H); Mass (ES+) m/z 452.73 (M⁺+1), 474.60 (M⁺+Na). Oxalate salt: mp 150–152 °C (dec); Anal. [C₂₆H₃₂N₂O₅·(CO₂H)₂] C, H, N.

5.61. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-diethylaminomethyl-3-hydroxy-propionic acid ethyl ester (4A4B2C7) (2:1)

The product was obtained as pale yellow oil (55%): IR (neat, cm⁻¹) 1730 (CO₂Et), 3421 (OH); ¹H NMR

(CDCl₃, 200 MHz) $\delta = 1.00-1.19$ (m, 2t merged, 6H, J = 7.2 Hz, $2 \times \text{CH}_3$), 2.51-3.15 (m, 14H, $6 \times \text{NCH}_2$ and $2 \times \text{CH}$), 3.72-3.80 (m, 2q merged, 4H, J = 7.0 Hz, $2 \times \text{OCH}_2$), 5.30, 5.34 (d, 1H, J = 7.0 Hz, CH), 5.38, 5.42 (d, 1H, J = 7.0 Hz, CH), 6.47 (s, 1H, =CH), 6.55 (s, 1H, =CH), 7.46-7.68 (m, 8H, Ar–H); Mass (ES+) m/z 381.80 (M⁺+1). Oxalate salt: mp 101-102 °C (dec); Anal. [C₁₉H₂₅ClN₂O₄·(CO₂H)₂] C, H, N.

5.62. 3-[3-(4-Chloro-phenyl)-isoxazol-5-yl]-2-diethylaminomethyl-3-hydroxy-propionic acid ethyl ester (4A5B2C7) (2:1)

The product was obtained as pale yellow oil (50%): IR (neat, cm⁻¹) 1728 (CO₂Et), 3368 (OH); ¹H NMR (CDCl₃, 200 MHz) δ = 1.00–1.15 (m, 2t merged, 6H, J = 7.2 Hz, 2 × CH₃), 2.46–2.56 (m, 4H, 2 × NCH₂), 2.69–2.87 (m, 6H, 2 × NCH₂ and 2 × CH), 3.09–3.19 (m, 4H, 2 × NCH₂), 3.72–3.79 (m, 2q merged, 4H, J = 7.0 Hz, 2 × OCH₂), 5.27, 5.31 (d, 1H, J = 7.8 Hz, CH), 5.41, 5.45 (d, 1H, J = 7.8 Hz, CH), 6.46 (s, 1H, =CH), 6.55 (s, 1H, =CH), 7.39, 7.43 (d, 4H, J = 8.4 Hz, Ar–H), 7.71, 7.75 (d, 4H, J = 8.4 Hz, Ar–H); Mass (FAB+) m/z 381 (M⁺+1). Oxalate salt: mp 150–152 °C (dec); Anal. [C₁₉H₂₅ClN₂O₄·(CO₂H)₂] C, H, N.

5.63. 3-[3-(2,4-Dichloro-phenyl)-isoxazol-5-yl]-2-diethylaminomethyl-3-hydroxy-propionic acid ethyl ester (4A6B2C7)

ND.

5.64. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenyl-iso-xazol-5-yl)-acrylic acid methyl ester [E+Z(15%)] (5A1B1C1)

The product was obtained as pale yellow oil (58%); IR (neat, cm⁻¹) 1718 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 2.27 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.44 (br s, 8H, 4 × NCH₂), 2.58 (br s, 8H, 4 × NCH₂), 3. 36 (s, 2H, NCH₂), 3.63 (s, 2H, NCH₂), 3.86 (s, 6H, 2 × CO₂ CH₃), 6.82 (s, 1H, =CH), 6.86 (s, 1H, =CH), 7.01 (s, 1H, =CH), 7.47–7.49 (m, 6H, Ar–H), 7.62 (s, 1H, =CH), 7.80–7.84 (m, 4H, Ar–H); Mass (FAB+) m/z 342 (M⁺+1). Oxalate salt: mp 202–203 °C; Anal. [C₁₉H₂₃N₃O₃·2(CO₂H)₂] C, H, N.

5.65. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid methyl ester (*E*) (5A3B1C1)

The product was obtained as pale yellow oil (55%); IR (neat, cm⁻¹) 1707 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ 2.28 (s, 3H, NCH₃), 2.32–2.66 (m, 8H, 4 × NCH₂), 3.63 (s, 2H, NCH₂), 3.85 (s, 3H, CO₂CH₃), 5.13 (s, 2H, OCH₂O), 6.94 (s, 1H, =CH), 7.05, 7.09 (d, 2H, J = 8.6 Hz, Ar–H), 7.36–7.43 (m, 5H, Ar–H), 7.60 (s, 1H, =CH), 7.73, 7.77 (d, 2H, J = 8.6 Hz, Ar–H); Mass (ES+) m/z 447.93 (M⁺+1), 469.60 (M⁺+Na).

Oxalate salt: mp 180–182 °C; Anal. $[C_{26}H_{29}N_3O_4\cdot 2(CO_2-H)_2]$ C, H, N.

5.66. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid methyl ester (5A4B1C1) [E+Z(25%)]

The product was obtained as pale yellow oil (57%); IR (neat, cm⁻¹) 1720 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 2.26 (s, 3H, NCH₃), 2.30 (s, 3H, NCH₃), 2.43 (br s, 8H, 4×NCH₂), 2.58 (br s, 8H, 4×NCH₂), 3.36 (s, 2H, NCH₂), 3.59 (s, 2H, NCH₂), 3.86 (s, 6H, 2×CO₂ CH₃), 6.78 (s, 1H, =CH), 6.96 (s, 1H, =CH), 7.29 (s, 1H, =CH), 7.35–7.42 (m, 2H, Ar–H), 7.45–7.52 (m, 1H, Ar–H), 7.67 (s, 1H, =CH), 7.78–7.83 (m, 1H, Ar–H); Mass (ES+) m/z 375.80 (M⁺+1), 397.80 (M⁺+Na). Oxalate salt: mp 188–190°C; Anal. [C₁₉H₂₂ClN₃O₃·2(CO₂H)₂] C, H, N.

5.67. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenylisoxazol-5-yl)-acrylic acid ethyl ester (5A1B2C1) [E+Z(15%)]

The product was obtained as pale yellow oil (57%); IR (neat, cm⁻¹) 1714 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) δ = 1.25 (t, 3H, J = 7.2 Hz, CH₃), 1.36 (t, 3H, J = 7.2 Hz, CH₃), 2.33 (s, 3H, NCH₃), 2.35 (s, 3H, NCH₃), 2.43–2.66 (m, 16H, $8 \times$ NCH₂), 3.37 (s, 2H, NCH₂), 3.66 (s, 2H, NCH₂), 4.12 (q, 2H, J = 7.0 Hz, OCH₂), 4.30 (q, 2H, J = 7.0 Hz, OCH₂), 6.79 (s, 1H, =CH), 6.86 (s, 1H, =CH), 6.97 (s, 1H, =CH), 7.43–7.50 (m, 6H, Ar–H), 7.60 (s, 1H, =CH), 7.78–7.84 (m, 4H, Ar–H). Mass (FAB+) m/z 356 (M⁺+1). Oxalate salt: mp 177–179 °C; Anal. [C₂₀H₂₅N₃O₃·2(CO₂H)₂] C, H, N.

5.68. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid ethyl ester (5A3B2C1) (*E*)

The product was obtained as pale yellow oil (56%); IR (neat, cm⁻¹) 1703 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.36$ (t, 3H, J = 7.1 Hz, CH₃), 2.28 (s, 3H, NCH₃), 2.40–2.60 (m, 8H, $4 \times$ NCH₂), 3.63 (s, 2H, NCH₂), 4.30 (q, 2H, J = 7.2 Hz, OCH₂), 5.13 (s, 2H, OCH₂ O), 6.94 (s, 1H, =CH), 7.05, 7.09 (d, 2H, J = 8.8 Hz, Ar–H), 7.33–7.45 (m, 5H, Ar–H), 7.60 (s, 1H, =CH), 7.73, 7.77 (d, 2H, J = 8.8 Hz, Ar–H); Mass (ES+) m/z 462.07 (M⁺+1), 484.20 (M⁺+Na). Oxalate salt: mp 188–190 °C; Anal. [C₂₇H₃₁N₃O₄·2(CO₂H)₂] C, H, N.

5.69. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid ethyl ester (5A4B2C1) [E+Z(20%)]

The product was obtained as pale yellow oil (61%); IR (neat, cm⁻¹) 1718 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.25-1.39$ (m, 2t merged, 6H, J = 7.2 Hz, $2 \times$ CH₃), 2.26 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.43 (br s, 8H,

 $4 \times \text{NCH}_2$), 2.58 (br s, 8H, $4 \times \text{NCH}_2$), 3.36 (s, 2H, NCH₂), 3.58 (s, 2H, NCH₂), 4.25–4.35 (m, 2q merged, 4H, J = 7.0 Hz, $2 \times \text{OCH}_2$), 6.74 (s, 1H, =CH), 6.95 (s, 1H, =CH), 7.29 (s, 1H, =CH), 7.34–7.52 (m, 6H, Ar–H), 7.67 (s, 1H, =CH), 7.79–7.83 (m, 2H, Ar–H). Mass (ES+) m/z 390.20 (M⁺+1), 411.87 (M⁺+Na). Oxalate salt: mp 177–179 °C; Anal. [C₂₀H₂₄ClN₃O₃·2(CO₂H)₂] C, H, N.

5.70. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenylisoxazol-5-yl)-acrylic acid butyl ester (5A1B3C1) [E+Z(15%)]

The product was obtained as pale yellow oil (61%); IR (neat, cm⁻¹) 1715 (CO₂Bu-n); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.89-1.01$ (m, 2t merged, 6H, J = 7.2 Hz, $2 \times$ CH₃), 1.40–1.55 (m, 4H, $2 \times$ CH₂), 1.68–1.78 (m, 4H, $2 \times$ CH₂), 2.27 (s, 3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.44 (br s, 8H, $4 \times$ NCH₂), 2.59 (br s, 8H, $4 \times$ NCH₂), 3.35 (s, 2H, CH₂), 3.62 (s, 2H, CH₂), 4.22–4.31 (m, 2t merged, 4H, J = 6.4 Hz, OCH₂), 6.74 (s, 1H, =CH), 6.86 (s, 1H, =CH), 7.01 (s, 1H, =CH), 7.43–7.50 (m, 6H, Ar–H), 7.61 (s, 1H, =CH), 7.80-7.85 (m, 4H, AHr); Mass (FAB+) m/z 384 (M⁺+1). Oxalate salt: mp 192–194 °C; Anal. [C₂₂H₂₉N₃O₃·2(CO₂H)₂] C, H, N.

5.71. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid butyl ester (5A3B3C1) [E+Z(15%)]

The product was obtained as pale yellow oil (62%); IR (neat, cm⁻¹) 1715 (CO₂Bu-*n*); ¹H NMR (CDCl₃, 200 MHz) δ = 0.93 (t, 3H, J = 7.2 Hz, 2 × CH₃), 1.40–1.51 (m, 2H, 2 × CH₂), 1.64–1.74 (m, 2H, 2 × CH₂), 2.28 (s, 3H, NCH₃), 2.30 (s, 3H, NCH₃), 2.31–2.62 (m, 2 × 4H, NCH₂), 3.62 (s, 2H, CH₂), 3.85 (s, 2H, CH₂), 4.25 (t, 2 × 2H, OCH₂, J = 6.5 Hz), 5.12 (s, 2H, OCH₂ O), 5.13 (s, 2H, CH₂Ph), 6.80 (s, 1H, CH), 6.93 (s, 1H, =CH), 7.05, 7.09 (d, 2 × 2H, J = 8.8 Hz, Ar–H), 7.34–7.43 (m, 10H, Ar–H), 7.72, 7.76 (d, 2H, J = 8.8 Hz, Ar–H), 7.73, 7.77 (d, 2H, J = 8.8 Hz, Ar–H). Mass (ES+) m/z 490.07 (M⁺+1), 511.93 (M⁺+Na). Oxalate salt: mp 153–155 °C; Anal. [C₂₉H₃₅N₃O₄·2(CO₂H)₂] C, H, N.

5.72. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylic acid butyl ester (5A4B3C1) [E+Z(15%)]

The product was obtained as pale yellow oil (60%); IR (neat, cm⁻¹) 1716 (CO₂ Bu-n); ¹H NMR (CDCl₃, 200 MHz) δ = 0.98 (t, 6H, J = 7.2 Hz, 2 × CH₃), 1.40–1.47 (m, 4H, 2 × CH₂), 1.64–1.75 (m, 4H, 2 × CH₂), 2.26 (s,3H, NCH₃), 2.29 (s, 3H, NCH₃), 2.43 (br s, 8H, 2 × 4NCH₂), 2.57 (br s, 8H, 2 × NCH₂), 3.35 (s, 2H, NCH₂), 3.58 (s, 2H, NCH₂), 4.26 (q, 4H, J = 6.6 Hz, 2 × OCH₂), 6.73 (s, 1H, CH), 6.95 (s, 1H, =CH), 7.28 (s, 1H, =CH), 7.34–7.51 (m, 6H, Ar–H), 7.65 (s, 1H, =CH), 7.79–7.83 (m, 2H, Ar–H). Mass (ES+) m/z 439.87 (M⁺+Na). Oxalate salt: mp 193–195 °C; Anal. [C₂₂H₂₈ClN₃O₃·2(CO₂H)₂] C, H, N.

5.73. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenyl-isoxazol-5-yl)-acrylonitrile (5A1B5C1) (Z)

The product was obtained as pale yellow oil (59%); IR (neat, cm $^{-1}$) 2220 (CN); 1 H NMR (CDCl $_{3}$, 200 MHz) $\delta = 2.32$ (s, 3H, NCH $_{3}$), 2.40–2.70 (m, 8H, 4 × NCH $_{2}$), 3.34 (s, 2H, NCH $_{2}$), 7.25 (s, 1H, =CH), 7.37 (s, 1H, =CH), 7.46–7.49 (m, 3H, Ar–H), 7.83–7.88 (m, 2H, Ar–H); Mass (FAB+) m/z 309 (M $^{+}$ +1). Oxalate salt: mp 205–207 °C; Anal. [C $_{18}$ H $_{20}$ N $_{4}$ O·2(CO $_{2}$ H) $_{2}$] C, H, N

5.74. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-acrylonitrile (5A3B5C1) (Z)

The product was obtained as pale yellow oil (59%); IR (neat, cm⁻¹) 2218 (CN); ¹H NMR (CDCl₃, 200 MHz) δ = 2.31 (s, 3H, NCH₃), 2.42–2.64 (m, 8H, 4 × NCH₂), 3.32 (s, 2H, CH₂), 5.13 (s, 2H, OCH₂O), 7.04, 7.08 (d, 2H, J = 8.8 Hz, Ar–H), 7.22–7.43 (m, 6H, 5Ar–H and =CH), 7.77, 7.81 (d, 2H, J = 8.8 Hz, Ar); Mass (ES+) m/z 436.60 (M⁺+Na). Oxalate salt: mp 207–208 °C; Anal. [C₂₅H₂₆N₄O₂·2(CO₂H)₂] C, H, N.

5.75. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl) acrylonitrile (5A4B5C1) (Z)

The product was obtained as pale yellow oil (61%); IR (neat, cm⁻¹) 2218 (CN); ¹H NMR (CDCl₃, 200 MHz) $\delta = 2.23$ (s, 3H, NCH₃), 2.40–2.61 (m, 8H,, NCH₃), 3.34 (s, 2H, NCH₂), 7.36–7.54 (m, 4H, 2Ar–H merged with $2 \times =$ CH), 7.71–7.76 (m, 2H, Ar–H). Mass (ES+) m/z 447.93 (M⁺+1), 469.60 (M⁺+Na). Oxalate salt: mp 190–192 °C; Anal. [C₁₈H₁₉ClN₄O·2(CO₂H)₂] C, H, N.

5.76. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenyl-iso-xazol-5-yl)-propionic acid methyl ester (7A1B1C1)

The product was obtained as pale yellow oil (71%); IR (neat, cm⁻¹) 1734 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) $\delta = 2.28$ (s, 3H, NCH₃), 2.43–2.68 (m, 10H, $5 \times$ NCH₂), 3.08 (br s, 3H, CH and CH₂), 3.68 (s, 3H, CO₂CH₃), 6.33 (s, 1H, =CH), 7.42–7.45 (m, 3H, Ar–H), 7.75–7.80 (m, 2H, Ar); Mass (FAB+) m/z 344 (M⁺+1). Oxalate salt: mp194–195 °C; Anal. [C₁₉H₂₅N₃-O₃·2(CO₂H)₂] C, H, N.

5.77. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (7A3B1C1)

The product was obtained as pale yellow oil (68%); IR (neat, cm⁻¹) 1732 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 2.28 (s, 3H, NCH₃), 2.36–2.66 (m, 10H, $5 \times$ NCH₂), 3.09 (br s, 3H, CH and CH₂), 3.68 (s, 3H, CO₂ CH₃), 5.11 (s, 2H, OCH₂ O), 6.26 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.8 Hz, Ar–H), 7.32–7.51 (m, 5H, Ar–H), 7.69, 7.73 (d, 2H, J = 8.7 Hz, Ar–H); Mass

(ES+) m/z 472.87 (M⁺+Na). Oxalate salt: mp 197–198 °C; Anal. [C₂₆H₃₁N₃O₄·2(CO₂H)₂] C, H, N.

5.78. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid methyl ester (7A4B1C1)

The product was obtained as pale yellow oil (72%); IR (neat, cm⁻¹) 1736 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 2.29 (s, 3H, NCH₃), 2.46–2.70 (m, 10H, $5 \times$ NCH₂), 3.13 (br s, 3H, CH and CH₂), 3.69 (s, 3H, OCH₃), 6.49 (s, 1H, =CH), 7.34–7.41 (m, 2H, Ar–H), 7.46–7.50 (m, 1H, Ar–H), 7.69–7.74 (m, 1H, Ar–H); Mass (ES+) m/z 379.20 (M⁺+1), 401.00 (M⁺+Na). Oxalate salt: mp 190–191 °C; Anal. [C₁₉H₃₀ClN₃-O₃·2(CO₂·H)₂] C, H, N.

5.79. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenyl-iso-xazol-5-yl)-propionic acid ethyl ester (7A1B2C1)

The product was obtained as colourless oil (63%); IR (neat, cm⁻¹) 1731 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) δ = 1.23 (t, 3H, J = 7.2 Hz, CH₃), 2.27 (s, 3H, NCH₃), 2.32–2.75 (m, 10H, $5 \times$ N CH₂), 3.07 (br s, 3H, CH and CH₂), 4.14 (q, 2H, J = 7.1 Hz, OCH₂), 6.33 (s, 1H, =CH), 7.42–7.45 (m, 3H, Ar–H), 7.75–7.80 (m, 2H, Ar–H); Mass (FAB+) m/z 358 (M⁺+1). Oxalate salt: mp 201–202 °C; Anal. [C₂₀H₂₇N₃O₃·2(CO₂H)₂] C, H, N.

5.80. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (7A3B2C1)

The product was obtained as pale yellow oil (68%); IR (neat, cm⁻¹) 1732 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.23$ (t, 3H, J = 7.2 Hz, CH₃), 2.29 (s, 3H, NCH₃), 2.30–2.78 (m, 10H, $5 \times$ N CH₂ and CH), 3.07 (br s, 3H, CH and CH₂), 4.14 (q, 2H, J = 7.1 Hz, OCH₂), 5.11 (s, 2H, OCH₂ O), 6.27 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.8 Hz, Ar–H), 7.32–7.65 (m, 5H, Ar), 7.68, 7.72 (d, 2H, J = 8.8 Hz, Ar–H); Mass (ES+) m/z 464.13 (M⁺+1), 485.8 (M⁺+Na). Oxalate salt: mp 203–204 °C; Anal. [C₂₇H₃₃N₃O₄·2(CO₂H)₂] C, H, N.

5.81. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid ethyl ester (7A4B2C1)

The product was obtained as yellow oil (65%); IR (neat, cm⁻¹) 1732 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.24$ (t, 3H, J = 7.2 Hz, CH₃), 2.27 (s, 3H, NCH₃), 2.42–2.57 (m, 10H, $5 \times$ NCH₂), 3.16 (m, 3H, CH₂), 4.15 (q, 2H, J = 7.1 Hz, OCH₂), 6.49 (s, 1H, =CH), 7.34–7.38 (m, 2H, Ar–H), 7.46–7.50 (m, 1H, Ar–H), 7.69–7.74 (m, 1H, Ar–H); Mass (FAB+) m/z 392 (M⁺+1). Oxalate salt: mp 202–203 °C; Anal. [C₂₀H₂₆ClN₃-O₃·2 (CO₂H)₂] C, H, N.

5.82. 2-(4-Methyl-piperazin-1-ylmethyl)-3-(3-phenyl-iso-xazol-5-yl)-propionic acid butyl ester (7A1B3C1)

The product was obtained as light brown oil (67%); IR (neat, cm⁻¹) 1728 (CO₂ Bu-*n*); ¹H NMR (CDCl₃, 200 MHz) δ = 0.88 (t, 3H, J = 7.2 Hz, CH₃), 1.28–1.39 (m, 4H, CH₂), 1.51–1.61 (m, 2H, CH₂), 2.27 (s, 3H, NCH₃), 2.43–2.69 (m, 10H, $5 \times$ NCH₂), 3.07–3.16 (m, 3H, CH and CH₂), 4.09 (t, 2H, J = 6.5 Hz, OCH₂), 6.33 (s, 1H, =CH), 7.42–7.45 (m, 3H, Ar–H), 7.75–7.79 (m, 2H, Ar–H); Mass (FAB+) m/z 386 (M⁺+1). Oxalate salt: mp 190–191 °C; Anal. [C₂₂H₃₁N₃O₃·2(CO₂H)₂] C, H, N.

5.83. 3-[3-(4-Benzyloxy-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (7A3B3C1)

The product was obtained as light brown oil (67%); IR (neat, cm $^{-1}$) 1731 (CO $_2$ Bu-n); $^1\mathrm{H}$ NMR (CDCl $_3$, 200 MHz) $\delta=0.88$ (t, 3H, J=7.2 Hz, CH $_3$), 1.25–1.39 (m, 2H, CH $_2$), 1.50–1.66 (m, 2H, CH $_2$), 2.28 (s, 3H, NCH $_3$), 2.31–2.69 (m, 10H, $5\times$ NCH $_2$), 3.07 (br s, 3H, CH and CH $_2$), 4.09 (t, 2H, J=6.4 Hz, OCH $_2$), 5.11 (s, 2H, OCH $_2$ O), 6.26 (s,1H, =CH) 7.01, 7.05 (d, 2H, Ar, J=8.8 Hz), 7.33–7.42 (m, 5H, Ar–H), 7.68, 7.72 (d, 2H, J=8.8 Hz, Ar–H); Mass (FAB+) m/z 492 (M $^+$ +1). Oxalate salt: mp 193–194 °C; Anal. [C $_{29}$ H $_{37}$ N $_{3}$ -O $_{42}$ (CO $_{2}$ H) $_{2}$] C, H, N.

5.84. 3-[3-(2-Chloro-phenyl)-isoxazol-5-yl]-2-(4-methyl-piperazin-1-ylmethyl)-propionic acid butyl ester (7A4B3C1)

The product was obtained as brown oil (69%); IR (neat, cm⁻¹) 1733 (CO₂ Bu-*n*); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.89$ (m, 3H, CH₃), 1.25–1.40 (m, 4H, CH₂), 2.28 (s, 3H, NCH₃), 2.43–2.70 (m, 10H, 5 × NCH₂), 3.09 (br s, 3H, CH and CH₂), 4.09 (t, 2H, J = 6.6 Hz, OCH₂), 6.49 (s, 1H, =CH), 7.33–7.41 (m, 2H, Ar–H), 7.46–7.50 (m, 1H, Ar–H), 7.69-7.74 (m, 1H, Ar–H); Mass (FAB+) m/z 420 (M⁺+1). Oxalate salt: mp 195–196 °C; Anal. [C₂₂H₃₀ClN₃O₃·2(CO₂H)₂] C, H, N.

5.85. Acetylation—general procedure

To a stirred solution of appropriate compound from 2 (3.25 mmol) in dry dichloromethane (5 mL) was added pyridine (0.48 mL, 6.0 mmol) followed by a dropwise addition of solution of acetyl chloride (0.46 mL, 6.5 mmol) in dry dichloromethane (3 mL) at 0 °C. After the addition was complete, the reaction was continued at rt for 1 h. The reaction mixture was extracted with dichloromethane (2 × 30 mL) and water (50 mL). The organic layers were combined, washed with brine, dried over anhyd Na₂SO₄ and evaporated to obtain an oily residue. The residue was purified on a small band of silica gel using hexane/ethyl acetate (85:15, v/v) as eluent to obtain pure acetates 3.

5.86. DABCO-mediated reaction of NaBH₄ with acetate of Baylis-Hillman adducts—general procedure

To the solution of appropriate acetate 3 (2 mmol) in THF/water (3 mL, 1:1, v/v) was added DABCO (0.22 g, 2 mmol) and the reaction was allowed to proceed at rt. As soon as the solution becomes clear (ca 15 min), NaBH₄ (0.08 g, 2 mmol) was added with stirring. The reaction was complete in 15 min, after which the reaction mixture was extracted with ethyl acetate $(2 \times 30 \text{ mL})$. The organic layers were combined, dried over anhyd Na₂ SO₄ and evaporated to obtain compounds 6 in sufficiently pure form. In few cases the analytical sample was prepared by column chromatography over silica gel using hexane/ethyl acetate (85:15, v/v) as eluent.

5.87. 2-(3-Phenyl-isoxazol-5-ylmethyl)-acrylic acid methyl ester (6A1B1)

The product was obtained as colourless oil (81%); IR (neat, cm $^{-1}$) 1721 (CO₂Me); 1 H NMR (CDCl₃, 200 MHz) $\delta = 3.79$ (s, 3H, CO₂ CH₃), 3.84 (s, 2H, CH₂), 5.77 (s, 1H, =CH₂), 6.36 (s, 1H, =CH₂), 6.39 (s, 1H, =CH), 7.42–7.45 (m, 3H, Ar–H), 7.76–7.81 (m, 3H, Ar–H); Mass (FAB+) m/z 244 (M $^{+}$ +1); Anal. [C₁₄H₁₃NO₃] C, H, N.

5.88. 2-[3-(4-Benzyloxy-phenyl)-isoxazol-5-ylmethyl]-acrylic acid methyl ester (6A3B1)

The product was obtained as a white solid (89%); mp 90–92 °C; IR (KBr, cm⁻¹) 1718 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 3.78 (s, 3H, CO₂CH₃), 3.82 (s, 2H, CH₂), 5.11 (s, 2H, OCH₂O), 5.76 (s, 1H, =CH₂), 6.30 (s, 1H, =CH₂), 6.38 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.8 Hz, Ar–H), 7.33–7.42 (m, 5H, Ar–H), 7.70, 7.74 (d, 2H, J = 8.8 Hz Ar–H); Mass (FAB+) m/z 350 (M⁺+1); Anal. [C₂₁H₁₉NO₄] C, H, N.

5.89. 2-[3-(2-Chloro-phenyl)-isoxazol-5-ylmethyl]-acrylic acid methyl ester (6A4B1)

The product was obtained as colourless oil (99%); IR (neat, cm⁻¹) 1722 (CO₂Me); ¹H NMR (CDCl₃, 200 MHz) δ = 3.79 (s, 3H, CO₂ CH₃), 3.86 (s, 2H, CH₂), 5.77 (s, 1H, =CH₂), 6.39 (s, 1H =CH₂), 6.52 (s, 1H, =CH), 7.34–7.38 (m, 2H, Ar–H), 7.46–7.51 (m, 1H, Ar–H), 7.70–7.74 (m, 1H, Ar–H); Mass (FAB+) m/z 278 (M⁺+1); Anal. [C₁₄H₁₂ClNO₃] C, H, N.

5.90. 2-(3-Phenyl-isoxazol-5-ylmethyl)-acrylic acid ethyl ester (6A1B2)

The product was obtained as colourless oil (82%); IR (neat, cm⁻¹) 1716 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.30$ (t, 3H, J = 7.2 Hz, CH₃), 3.83 (s, 2H, CH₂), 4.23 (q, 2H, J = 7.2 Hz, OCH₂); 5.75 (s, 1H, =CH₂), 6.36 (s, 1H, =CH₂), 6.38 (s, 1H, =CH), 7.42–7.45 (m,

3H, Ar–H), 7.76–7.80 (m, 2H, Ar–H); Mass (ES+) m/z 258.27 (M⁺+1), 280.40 (M⁺+Na); Anal. [C₁₅H₁₅NO₃] C, H, N.

5.91. 2-[3-(4-Benzyloxy-phenyl)-isoxazol-5-ylmethyl]-acrylic acid ethyl ester (6A3B2)

The product was obtained as colourless oil (99%); IR (neat, cm⁻¹) 1705 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.29$ (t, 3H, J = 7.2 Hz, CH₃), 4.22 (q, 2H, J = 7.1 Hz, OCH₂), 5.11 (s, 2H, OCH₂O), 5.74 (s, 1H, =CH₂), 6.30 (s, 1H, =CH), 6.37 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.8 Hz, Ar-H), 7.30-7.52 (m, 5H, Ar-H), 7.70, 7.74 (d, 2H, J = 8.8 Hz Ar-H); Mass (ES+) m/z 386.33 (M⁺+Na); Anal. [C₂₂H₂₁NO₄] C, H, N.

5.92. 2-[3-(2-Chloro-phenyl)-isoxazol-5-ylmethyl]-acrylic acid ethyl ester (6A4B2)

The product was obtained as colourless oil (88%); IR (neat, cm⁻¹) 1718 (CO₂Et); ¹H NMR (CDCl₃, 200 MHz) $\delta = 1.29$ (t, 3H, J = 7.2 Hz, CH₃), 3.86 (s, 2H, CH₂), 4.23(q, 2H, J = 7.2 Hz, OCH₂), 5.75 (s, 1H =CH₂), 6.39 (s, 1H, =CH₂), 6.52 (s, 1H, =CH), 7.33–7.41 (m, 2H, Ar–H), 7.45–7.50 (m, 1H, Ar–H), 7.70–7.75 (m, 1H, Ar–H); Mass (ES+) m/z 314.00 (M⁺+Na); Anal. [C₁₅H₁₄ClNO₃] C, H, N.

5.93. 2-(3-Phenyl-isoxazol-5-ylmethyl)-acrylic acid butyl ester (6A1B3)

The product was obtained as colourless oil (89%); IR (neat, cm⁻¹) 1715 (CO₂Bu-n); ¹H NMR (CDCl₃, 200 MHz) δ = 0.92 (t, 3H, J = 7.2 Hz, CH₃), 1.29–1.47 (m, 2H, CH₂), 1.59–1.72 (m, 2H, CH₂), 3.84 (s, 2H, CH), 4.18 (t, 2H, J = 6.5 Hz, OCH₂), 5.75 (s, 1H, =CH₂), 6.36 (s, 1H, =CH₂), 6.38 (s, 1H, =CH), 7.42–7.47 (m, 3H, Ar–H), 7.76–7.81 (m, 2H, Ar–H); Mass (ES+) m/z 286.60 (M⁺+1), 308.40 (M⁺Na); Anal. [C₁₇H₁₉NO₃] C, H, N.

5.94. 2-[3-(4-Benzyloxy-phenyl)-isoxazol-5-ylmethyl]-acrylic acid butyl ester (6A3B3)

The product was obtained as a white solid (69%); mp 66-68 °C; IR (KBr, cm⁻¹) 1716 (CO₂Bu-*n*); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.92$ (t, 3H, J = 7.2 Hz, CH₃), 1.26–1.47 (m, 2H, CH₂), 1.57–1.72 (m, 2H, CH₂), 3.81 (s, 2H, CH₂), 4.17 (t, 2H, J = 6.4 Hz, OCH₂), 5.11 (s, 2H, OCH₂O), 5.74 (s, 1H, =CH₂), 6.29 (s, 1H, =CH₂), 6.37 (s, 1H, =CH), 7.01, 7.05 (d, 2H, J = 8.8 Hz, Ar–H), 7.33–7.46 (m, 5H, Ar–H), 7.70, 7.74 (d, 2H, J = 8.8 Hz Ar–H); Mass (FAB+) m/z 392 (M⁺+1); Anal. [C₂₄H₂₅NO₄] C, H, N.

5.95. 2-[3-(2-Chloro-phenyl)-isoxazol-5-ylmethyl]-acrylic acid butyl ester (6A4B3)

The product was obtained as colourless oil (90%); IR (neat, cm⁻¹) 1719 (CO₂ Bu-*n*); ¹H NMR (CDCl₃, 200 MHz) $\delta = 0.93$ (t, 3H, J = 7.2 Hz, CH₃), 1.26–1.47

(m, 2H, CH₂), 1.57–1.72 (m, 2H, CH₂), 3.86 (s, 2H, CH₂), 4.18 (t, 2H, J = 6.5 Hz, OCH₂), 5.75 (s, 1H, =CH₂), 6.39 (s, 1H, =CH₂), 6.52 (s, 1H, =CH), 7.30–7.42 (m, 2H, Ar–H), 7.46–7.50 (m, 1H, Ar–H), 7.70–7.75 (m, 1H, Ar–H); Mass (FAB+) m/z 320 (M⁺+1); Anal. [C₁₇H₁₈CINO₃] C, H, N.

6. Biological assays

6.1. Animals

Experiments on pulmonary thromboembolism and bleeding time were performed on male Swiss mice (average wt 23 g). New Zealand white strain rabbits of either sex were also used to evaluate antithrombotic effect of the test compound. While, male Sprague Dawley rats (250–300 g) were used for the aggregation experiments. All the animals were kept in polypropylene cages and maintained at 24 ± 0.5 °C, 12 h day/night cycle in the Animal House of the Central Drug Research Institute, and were provided with chow pellets and water ad libitum. All the experiments were performed in accordance with the ethical and animal care guidelines of the Institute.

6.2. Chemicals

Adenosine 5'-diphosphate (ADP), arachidonic acid (AA), calcium ionophore (A23187), collagen, phorbol myristate acetate (PMA) and thrombin were dissolved in either saline or DMSO and stored at -20 °C. Fresh dilutions were prepared at the time of experiment. All the reagents were obtained from Sigma Chemical Co. (St. Louis, USA).

6.3. Thrombin assay

The compound and its analogues ($100\,\mu g/mL$) were assayed for their thrombin inhibitory activity (in vitro) by the amidolytic assay. ²² Enzyme inhibition in presence of compound was measured in a total volume of 250 L containing Tris buffer 100 M (0.75 M NaCl, 10 mM CaCl₂, 0.1% BSA, pH 7.5), thrombin substrate (0.2 mM) and thrombin (3 nM). Stock solutions of the compounds were prepared in triple distilled water and diluted in the assay buffer prior to the experiment.

6.4. Evaluation of coagulation parameters

Blood was collected by cardiac puncture of the etheranaesthetized rat into a syringe containing 3.8% trisodium citrate (9:1, v/v). It was centrifuged at 2500 g for 15 min at 20 °C. Test compounds were prepared in physiological saline (0.9% NaCl). Coagulation parameters, that is, thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) were evaluated according to the manufacturer's instructions and measured in a coagulometer (Stago, France).

6.5. Evaluation of compounds on platelet aggregation

Sprague Dawley rats (wt 250–300 gm) were anaesthetized with ether and blood (9 mL) was drawn from the heart into a plastic syringe containing 1 mL of 1.9% trisodium citrate. It was centrifuged at $275 \times g$ for $20 \, \text{min}$, at 20 °C and the platelet rich plasma (PRP) was separated. The remaining blood was further centrifuged at 1500 × g for 15 min at 20 °C to obtain platelet poor plasma (PPP). The platelet count in the PRP was adjusted to 2×10^8 cells/mL by using PPP. Aggregation was induced by adenosine-5'-diphosphate (ADP), thrombin, collagen, or calcium ionophore A23187 and was monitored on a dual channel aggregometer (Chronolog, USA).16 The test compound was incubated with PRP for 5 min before the addition of aggregation inducing agent. Percent inhibition of the test compounds at various concentrations was calculated as follows:

$$\%$$
Inhibition = $[1 - Aggregation_{test}/Aggregation_{vehicle}]$
× 100

IC₅₀ for the test compounds was determined by a nonlinear plot between % inhibition and concentration of the test substance.

6.6. Effect on mouse thrombosis

Pulmonary thromboembolism was induced by a method described earlier. 16 The compounds to be tested or the vehicle were administered orally 60 min prior to the thrombotic challenge. Thrombosis was induced by a mixture of collagen (150 µg/mL) and adrenaline (50 µg/mL) by the rapid intravenous injection into the tail vein to induce hind limb paralysis or death. In each group 10 animals were used for evaluating the test compound, aspirin or vehicle.

Protection against collagen plus epinephrine was expressed as

$$(1 - P_{\text{test}}/P_{\text{control}}) \times 100$$

where P_{test} is the number of animals paralyzed/dead in test compound-treated group, and P_{control} is the number of animals paralyzed/dead in vehicle treated group.

6.7. Rabbit venous thrombosis model

Experiments were performed on New Zealand white strain rabbits (2–3 kg) either sex. *Escherichia coli* LPS strain 1055:B5 (Sigma Chemicals, USA) was injected intravenously via ear vein (1 µg/kg). ^{13,14} Jugular veins on the both sides were exposed and dissected free from surrounding tissue. Two loose sutures were placed 1.5 cm apart and all collateral veins were ligated. Four hours after *E. coli* endotoxin injection (animal is watched for any signs of hypersensitivity reaction during this period), stasis was established and maintained for 45 min by tightening the two sutures. Ligated segments

were removed and opened longitudinally and the thrombus was carefully removed and weighed. Heparin sodium (Beparine from beef intestinal mucosa \geqslant 140 USP units/mg; Biological E. Limited, India) was given in the doses of (0.5, 0.25, 0.1 mg/kg iv, via ear vein; n=6 observations for each dose in nine animals) 5 min before stasis and test compound (99/353; n=12 observations in 3 animals at $30 \,\mu\text{M kg}^{-1}$, po) or its saline vehicle (n=10 observations in five animals) were administered per orally 2 h prior to stasis.

Acknowledgements

The financial support in the form of fellowships to four of the authors AP, PS, SAVR and WRS from CSIR and AKR from ICMR, India is gratefully acknowledged. This work was supported partially through financial grant under DST Project no SR/SI/OC-04/2003. The technical assistance by Mrs. K. Bhutani and Mr. M. S. Ansari towards biological evaluation of compounds is also gratefully acknowledged.

References and notes

- 1. Thrombosis in Cardiovascular Disorders; Fuster, V., Verstraete, M., Eds.; W.B. Saunders: Philadelphia, 1992.
- (a) Gresele, P.; Agnelli, G. *TIPS* **2002**, *23*, 25–32; (b) Collins, B.; Hollidge, C. *Nature Rev. Drug Discovery* **2003**, 2, 11–12.
- 3. Raghavan, S. A. V.; Dikshit, M. *Drugs Future* **2002**, *27*, 669–683, and references cited therein.
- Gachet, C.; Cattaneo, M.; Ohlmann, P.; Hechler, B.; Lecchi, A.; Chevalier, J.; Cassel, D.; Mannucci, P. M.; Cazenave, J. P. Br. J. Haematol 1995, 91, 434

 –444.
- Gachet, C.; Hechler, B.; Leon, C.; Vial, C.; Leray, C.; Ohlmann, P.; Cazenave, J. P. *Thromb. Haemost.* 1997, 78, 306–309.
- Tandon, N. N.; Kralisz, U.; Jamieson, G. A. J. Biol. Chem. 1989, 264, 7576–7583.
- Kainoh, M.; Ikeda, Y.; Nishio, S.; Nakadate, T. *Thromb. Res.* 1992, 65, 165–176.
- (a) Hanessian, S.; Therrien, E.; Granberg, K.; Nilsson, I. Bioorg. Med. Chem. Lett. 2002, 12, 2907–2911; (b) Sielecki, T. M.; Liu, J.; Mousa, S. A.; Racanelli, A. L.; Hausner, E. A.; Wexler, R. R.; Olson, R. E. Bioorg. Med. Chem. Lett. 2001, 11, 2201–2204; (c) Ballabeni, V.; Tognolini, M.; Calcina, F.; Impicciatore, M.; Vicini, P.; Barocelli, E. Pharmacol. Res. 2002, 46, 389–393.
- (a) Pruitt, J. R.; Pinto, D. J.; Estrella, M. J.; Bostrom, L. L.; Knabb, R. M.; Wong, P. C.; Wright, M. R.; Wexler, R. R. Bioorg. Med. Chem. Lett. 2000, 10, 685–689; (b) Nantermet, P. G.; Barow, J. C.; Lundell, G. F.; Pellicore, J. M.; Rittle, K. E.; Young, M. B.; Friedanger, R. M.; Connoly, T. M.; Condra, C.; Karczewski, J.; Bednar, R. M.; Gaul, S. L.; Gould, R. J.; Prendergast, K.; Selnick, H. G. Bioorg. Med. Chem. Lett. 2002, 12, 319–323.
- Batra, S.; Srinivasan, T.; Rastogi, S. K.; Kundu, B.; Patra, A.; Bhaduri, A. P.; Dikshit, M. *Bioorg. Med. Chem. Lett.* 2002, 12, 1905–1908.
- Original papers on Baylis-Hillman reaction (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815; (b) Baylis, A.B.; Hillman, M.E.D. German Patent 2155113, 1972; Chem Abstr. 1972, 77, 34174q; (c) Reviews

- Drewes, S. E.; Roos, G. H. P. *Tetrahedron* **1988**, *44*, 4653–4670; (d) Basavaiah, D.; Rao, P. D.; Hyma, R. S. *Tetrahedron* **1996**, *52*, 8001–8062; (e) Ciganek, E. *Org. React.* **1997**, *51*, 201–350; (f) Kim, J. N.; Lee, K. Y. *Curr. Org. Chem.* **2002**, *6*, 627–645; (g) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* **2003**, *103*, 811–890.
- Diminno, G.; Silver, M. J. J. Pharmacol. Exp. Ther. 1983, 225, 57–60.
- Berry, C. N.; Girard, D.; Girardot, C.; Lochot, S.; Lunven, C.; Visconte, C. Semin. Thromb. Haemost. 1996, 22, 233–241.
- Herbert, J. M.; Bernat, A.; Dol, F.; Herault, J. P.; Crepon,
 B.; Lormeau, J. M. J. Pharmacol. Exp. Ther. 1996, 276,
 1030–1038
- Dejna, E.; Collioni, A.; Quntana, A. Thromb. Res. 1979, 15, 191–197.

- Dikshit, M.; Kumari, R.; Srimal, R. C. J. Pharmacol. Exp. Ther. 1993, 265, 1369–1373.
- 17. Tolentino, A. R.; Bahou, W. F. In *Platelets*; Michelson, A. D., Ed.; Academic, 2002; pp 117–129.
- 18. Heyu, N.; Freedman, J. Science 2003, 28, 264-275.
- 19. Hato, T.; Ginsberg, M. H.; Shattil, S. J. In *Platelets*; Michelson, A. D., Ed.; Academic, 2002; pp 105–110.
- Siess, W.; Lapetina, E. G. Biochem. J. 1988, 255, 309–318.
- Vuori, K.; Ruoslahti, E. J. Biol. Chem. 1993, 268, 21459– 21462.
- Moon, J. C.; Junling, L.; Tamara, I. P.; Shirley, S.;
 Dennis, W. T.; Thomas, M. C.; Demin, W.; Carl, W. J.;
 Gartner, T. K. *Blood* 2003, 101, 2646–2651.
- Patra, A.; Batra, S.; Kundu, B.; Joshi, B. S.; Roy, R.; Bhaduri, A. P. Synthesis 2001, 276–280.